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ABSTRACT 

In constructing year-long call schedules for 
medical residents, a key challenge is the multi-
criteria nature of the problem -- the quality of a 
schedule depends on a number of (often com-
peting) metrics. One way to address this is to as-
sign weights to each metric to trade off between 
them in the objective function. This introduces a 
new challenge, however: requiring the schedul-
ers (here, the Chief Residents) to identify 
weights that accurately represent their prefer-
ences. In this paper, we instead present an effi-
cient way to generate the complete set of Pareto-
optimal solutions. The scheduler can then select 
a preferred schedule from this set, rather than 
trying to implicitly represent their preferences 
by weights. Computational results from a real-
world residency scheduling problem demon-
strate the tractability of this approach. 

 
Keywords: Multi-criteria optimization, resi-
dency scheduling, integer programming, optimi-
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1. INTRODUCTION 

This paper focuses on the construction of a year-
long call schedule for medical residents at a ma-
jor U.S. teaching hospital. There are many 
things that make this problem challenging. First 
is the length of the planning horizon -- in order 
to ensure that all educational requirements are 
met for the residents, while also providing ade-
quate patient care, it is necessary to plan the en-
tire year in a single schedule. Second, there are 
multiple types of residents to be considered si-
multaneously (first-year, second-year, etc.), 
each with different requirements and capabili-

ties. Third, these residents staff multiple hospi-
tals which also have varying requirements. Fi-
nally, there are myriad rules (typically ACEME 
mandates) placing limits on the number of hours 
that can be worked in a given time period. 
 
But even more difficult than enforcing these 
constraints is the challenge of defining an ap-
propriate objective function: What constitutes 
the "best" schedule? On the one hand, there is 
no obvious cost function to minimize. On the 
other hand, that does not mean that all feasible 
schedules (i.e. schedules that satisfy all con-
straints are requirements) are equally good. For 
example, a schedule in which every resident is 
assigned to roughly the same number of Friday 
night calls over the course of the year is defi-
nitely preferable, in the eyes of the Chief Resi-
dents (who build and oversee the schedule), to a 
schedule in which some residents are assigned 
to ten Friday night calls and others are assigned 
to only one or two. But what if the former 
means decreasing the number of vacation re-
quests that can be granted? Is it worse to have 
inequity in Friday call assignments or to in-
crease the number of vacations denied? There 
are many such metrics that matter to the indi-
vidual residents. In addition, the Chief Residents 
have the concern of maintaining equity across 
residents: not providing a highly desirable 
schedule to one resident at the expense of a very 
poor schedule for another. 
 
There is a vast literature in multi-criteria opti-
mization (see [9] for an excellent text). Much of 
this literature is devoted to healthcare schedul-
ing, in which the use of weights in the objective 



function is quite common (e.g. [1], [2], and [8]). 
The key obstacle that remains with these ap-
proaches is, of course, how to identify the 
weights. It is difficult for people to answer accu-
rately questions like "What is the relative impact 
of one extra Friday night call versus one extra 
vacation request denied?" Furthermore, these re-
lationships are often non-linear -- increasing a 
resident's schedule from including one Friday 
night call to including two is potentially very 
different from increasing from twelve to thirteen 
calls. Ultimately, if the weights entered into the 
objective function do not accurately represent 
the true preferences, then the resulting schedule 
will not necessarily be optimal -- in fact, it may 
be far from it. 
 
Our goal, then, is to present not one single 
schedule but instead the complete set of Pareto-
optimal schedules: ones for which no other 
schedule that has equal or better value for all 
metrics. If we provide this set of schedules to 
the Chief Residents, we can assure them that 
there is no schedule not in the set that they 
would prefer. In addition, we can intuit informa-
tion about their preferences from the way in 
which they evaluate the Pareto-optimal solu-
tions, providing feedback to more tightly limit 
this set in the future. 
 
The contributions of this research are two-fold. 
First, we formulate and solve a complex real-
world problem in healthcare scheduling. Sec-
ond, we present a more general algorithm for 
identifying this Pareto-optimal set efficiently. 
 
The remainder of the paper is organized as fol-
lows. In Section 2, we define the residency call 
scheduling problem. In Section [3], we describe 
the set of Pareto-optimal solutions and present 
an efficient algorithm for generating this set of 
solutions. We provide computational experi-
ments in Section [4] to demonstrate the tracta-
bility of our approach. Conclusions and sug-
gested areas for future research are offered in 
Section [5]. 

 
 
 

2. PROBLEM DESCRIPTION 
 
Doctors typically spend three to five years as 
residents after medical school, actively practic-
ing while still under the supervision of more 
senior physicians. Residents often have both 
daytime responsibilities (patient care, seminars, 
etc.) and the requirement of being on call many 
nights over the course of the year. On-call shifts 
provide additional training to the residents while 
also providing nighttime staffing for the hospi-
tals. The Chief Residents are responsible for 
building the call schedule so as to meet both of 
these needs. 
 
In the problem that we consider (see [6] and [7] 
for more details), there are two general classes 
of residents who cover three different hospitals 
with four different shift types. The schedule 
spans a full year of 365 days. Hard constraints, 
defined by the Chief Residents as mandatory 
rules to be followed, include: 
 
1) Each hospital must have adequate staffing on 
each night. Note that different hospitals have 
different requirements. Furthermore, within a 
given hospital, constraints can vary by day of 
week. 
 
2) Each resident must fulfill a given number of 
calls over the course of the year. This number 
varies by resident. 
 
3) A resident cannot be assigned to calls at two 
different hospitals on the same night. 
 
4) A resident cannot be on call more than once 
in any four day period. 
 
5) A resident cannot be assigned to more than 
five calls in any calendar month. 
 
6) Each resident has specific days that s/he can-
not be on call because of other commitments. 
 
7) Each resident has been pre-assigned to work 
specific holidays; these assignments are in input 
to the scheduling process described here. 
 



These constraints can be addressed by defining 
binary decision variables of the form xrhd which 
takes value one if resident r is assigned to hospi-
tal h on day d. An example of how a hard con-
straint is enforced is 

 
Σh xrhd < 1 for all residents r and days d 

 
which says that a resident cannot be assigned to 
more than one hospital on any given day. 

 
In addition to the hard constraints, there are sev-
eral preferences, i.e. metrics, to be taken into 
account. These include: 
 
1) Each resident should complete a pre-specified 
number of calls (sub-divided further into week-
day- and weekend- requirements) at each hospi-
tal. In practice, this may not be possible, in 
which case the same total number of calls 
should still be scheduled for each resident but 
some of these calls might be swapped between 
hospitals. 
 
2) Residents can each provide vacation requests 
prior to the start of the scheduling process. 
 
3) Residents prefer not to work Fridays or Sat-
urdays. 
 
4) Residents prefer that the hospital where they 
are on call at night matches the location where 
they are assigned for that day's daytime duties 
as well, so as to avoid extra commute time. 
 
5) The Chief Residents prefer that the individual 
resident perceive their schedules as fair, relative 
to the schedules of the other residents.  
 

3. IDENTIFYING PARETO-OPTIMAL 
SOLUTIONS 

 
It is fairly easy to enforce the rules and compute 
the metrics outlined in Section [2] by formulat-
ing constraints in an integer programming (IP) 
framework (see [6] and [7] for more details). 
The challenge, as highlighted earlier, is in de-
termining the objective function to use in com-
paring different feasible schedules. In our first 

experiences with this problem, we addressed 
this with the Chief Residents in an ad hoc, itera-
tive fashion. We first constructed an arbitrary 
feasible schedule and sent it to them for feed-
back. They identified characteristics that they 
liked and disliked, then made suggestions for 
further improvement. For example, they might 
request that fewer "moonlighters" (physicians 
not in the residency program who can be hired 
on an ad hoc basis) be assigned to fill gaps in 
the schedule. We would attempt to fulfill these 
requests, pointing out the corresponding (and 
often negative) impact on other metrics. For ex-
ample, hiring fewer moonlighters might mean 
having to deny more vacation requests. The 
Chief Residents would then decide whether or 
not to make the tradeoff, often suggesting alter-
natives to be evaluated in the model. This itera-
tive process ultimately led to the development 
of a schedule that was viewed not only as ac-
ceptable but in fact as a significant improvement 
over those schedules constructed manually by 
the Chief Residents in the past. 
 
This ad hoc approach is not sustainable in the 
long-term, however, and in subsequent research 
we have sought to find a way to automate this 
process without decreasing the quality of the fi-
nal solution. In this paper, we outline this re-
search. Specifically, we have chosen to elimi-
nate the iterative feedback loop with the Chief 
Residents by instead providing them, in a single 
step, with the complete set of Pareto-optimal 
schedules from which to select. A Pareto-
optimal schedule is one in which no improve-
ment can be made in one metric without making 
another metric strictly worse. For example, if 
the two metrics are "number of moonlighters 
hired" and "number of vacation requests de-
nied", with lowers numbers of each metric pre-
ferred, then a schedule with corresponding val-
ues (5, 8) is Pareto-dominant (i.e. "better", in the 
Pareto sense) relative to one with values (6, 10). 
However, we cannot say whether (5, 8) is better 
or worse than (6, 3) and thus must provide both 
schedules to the Chief Residents to choose be-
tween. 

 



This approach is premised on the notion of "mu-
tual preferential independence" ([10]), which 
suggest that, simply "less is better" in all catego-
ries. In this case, metrics have been defined to 
meet this criteria. 
 
Our ability to generate the set of all Pareto-
optimal solutions in a timely manner is based on 
three important facts: 
 
1) Each of the metrics of interest in this problem 
takes on discrete and fairly limited values. For 
example, one key metric is the maximum num-
ber of Fridays any single resident is assigned to 
be on call. This metric takes only integer values 
and cannot be any less than three (this is the to-
tal number of Fridays in the year divided by the 
number of residents in the program) nor any 
more than thirteen (the total number of weekday 
calls a resident works in a year). 
 
2) Each of the metrics can be expressed in such 
a way that higher values are always worse than 
lower values (e.g. "number of vacations denied" 
rather than "number of vacations granted"). 
 
3) If an upper bound is provided for each metric 
(e.g. "at most five Fridays per resident, at most 
eight vacations denied, and at most twelve 
moonlighters hired"), then solving the corre-
sponding feasibility problem (i.e. determining 
whether a schedule exists that satisfies these up-
per bounds) is easy to do, using traditional inte-
ger programming techniques and off-the-shelf 
commercial solvers. 
 
Based on these facts, we have developed an al-
gorithm that generates the set of all Pareto-
optimal solutions through an enumeration-based 
approach, using the following simple steps. [See 
[3], [4], and [5] for examples of our prior ex-
perience in using a related algorithm to solve 
problems in other application domains.] 
 
1. Define a metrics vector, where each element 
of the vector represents the maximum value for 
a given metrics. 
 

2. Enumerate all metrics vectors representing 
the combinations of valid values for all metrics. 
 
3.  For each vector in this list, solve an IP to as-
sess the feasibility of satisfying the scheduling 
constraints subject to the upper bounds imposed 
by the metric values in the vector. 
 
4. Report to the user (i.e. the Chief Residents) 
all metrics vectors (and, for each, a correspond-
ing schedule) that are both feasible and Pareto-
dominant relative to the other metrics vectors. 
 
To improve the tractability of this approach, we 
further note the opportunities for pruning the 
list. First, whenever a metrics vector is feasible, 
we can disregard all other metrics vectors for 
which the values of all elements are the same or 
larger -- these would never be preferred by the 
user. Second, whenever a metrics vector is in-
feasible, we can disregard all other metrics vec-
tors for which the values of all elements are the 
same or smaller -- these are more tightly con-
strained and thus will be infeasible as well. In 
our experience, we have observed that drawing 
from the middle of the list improves perform-
ance by increasing the amount of pruning that 
occurs. 
 
We demonstrate this approach with a simple ex-
ample in Figure 1. In this example, we assume 
three metrics, each of which can take values 0, 
1, or 2. This results in twenty-seven metrics vec-
tors in the initial list. Suppose that we solve the 
feasibility problem corresponding to upper 
bounds of 1, 1, and 1 on the three metrics, and 
that this problem is infeasible. Then we are able 
to eliminate this metrics vector from the list and, 
at the same time, can eliminate seven others 
([0,0,0], [0,0,1], [0,1,0], [1,0,0], [0,1,1], [1,0,1], 
and [1,1,0]) by propagating the infeasibility to 
more tightly constrained problems. If we next 
test (1, 2, 1) and determine it to be feasible, we 
set this vector aside as a potential candidate so-
lution. We are then able to prune three domi-
nated solutions ([2,2,1], [1,2,2], and [2,2,2]), re-
sulting in a new list of size fifteen. The 
algorithm proceeds accordingly until the list is 
emptied. Note that if, in a later step, (1, 2, 0) is 



found to be feasible, then the pending solution 
(1, 2, 1) will be discarded as dominated. 
     

 
Figure 1: Example of algorithmic approach 

 
4. COMPUTATIONAL EXPERIMENTS 

 
To evaluate the computational performance of 
the proposed algorithm, we conducted two 
computational experiments. Both were based on 
data from a major U.S. teaching hospital in one 
of its corresponding residency programs.  

 
In the first experiment we considered three met-
rics -- number of moonlighters hired during the 
winter holiday season, maximum number of 
Friday calls per resident, and maximum number 
of denied vacation request by resident. The ini-
tial list of candidate vectors contained 16,632 
elements. Of these, only 807 feasibility prob-
lems needed to be solved; the remainder were 
pruned through dominance. These feasibility 
problems had on the order of 5,000 constraints, 
8,000 binary variables, and 60,000 non-zero en-
tries in the constraint matrix. 
 
Ultimately, it was established that there is only 
one Pareto-optimal solution to this problem. 
This schedule was found (and proven to be op-
timal) in approximately 18 minutes. 
 
Because the metrics in the first experiment did 
not conflict (i.e. the value that was optimal for 
each metric individually could also be achieved 
collectively), we conducted a second experiment 
where we knew conflicts would arise. Specifi-

cally, for each of fifteen residents, we consid-
ered a vacation request in either the Fourth of 
July week or the week between Christmas and 
New Year's, recognizing that granting some 
residents' requests would have to come at the 
expense of denying others. In this instance, be-
cause each request corresponds to a metric with 
two values (1 if yes, 0 if no), there are 2¹⁵ = 
32,768 allocations to evaluate. Of these, only 
8,864 were tested; the remainder were pruned. 
Of the 32,768 possibilities, 280 were shown to 
be Pareto-optimal. Total run time to identify the 
280 Pareto-optimal schedules was approxi-
mately 6.6 hours. 

 
5. CONCLUSIONS AND FUTURE 

RESEARCH 
 
In this paper, we demonstrate a new way to 
solve a real-world residency scheduling prob-
lem, providing the Chief Residents with an ex-
haustive set of Pareto-optimal schedules from 
which to choose. Leveraging the discrete nature 
of the metrics used for evaluating the schedules, 
the fact that feasibility problems with fixed 
bounds on the metrics are easier to solve than 
optimization problems using weights in the ob-
jective function, and the opportunity to prune 
candidate metrics vectors both when the current 
vector is feasible and also when it is infeasible, 
we are able to solve real-world instances in ac-
ceptable run times. 
 
In the future, we plan to expand this research in 
the following ways. 
 
1) Extend the metrics vector definition to in-
clude all metrics of relevance to the Chief Resi-
dents. 
 
2) Investigate other pruning opportunities for 
those cases where the number of metrics is large 
and thus dominance is more difficult to establish 
(leading to less pruning and therefore longer run 
times). In particular, we plan to investigate 
graph-based partitioning methods for the set of 
metrics vectors. 
 



3) Evaluate effective ways to present the set of 
schedules to the Chief Residents when the 
Pareto-optimal set is large. We are also inter-
ested in developing feedback loops that allow us 
to learn more about the Chief Residents' prefer-
ence functions and thus further prune the candi-
date set of schedules. 
 
4) Apply the proposed algorithm to other dis-
crete, multi-criteria optimization problems, par-
ticularly (but not exclusively) in healthcare 
scheduling. 

 
6. ACKNOWLEDGEMENTS 

 
The author wishes to acknowledge the assis-
tance of Tian Jia Zhou, Ada Barlatt, Mary Jo 
Luppino, and Marshall Weir in the computa-
tional implementation of this research. 

 
7. REFERENCES 

 
[1] M. Azaiez and S. Al Sharif, "A 0-1 Goal 
Programming Model for Nurse Scheduling", 
Computers and Operations Research, Vol. 
32, 2005, pp. 491 - 507. 
 
[2] J. Bard and H. Purnomo, "Preference Sched-
uling for Nurses Using Column Generation", 
European Journal of Operational Research, 
Vol. 164, 2005, pp. 510 - 534. 
 
[3] A. Barlatt, A. Cohn, Y. Fradkin, O. 
Gusikhin, and C. Morford, "Using Composite 
Variable Modeling to Achieve Realism and 
Tractability in Production Planning: An Exam-
ple from Automotive Stamping", 2007, 
http://wwwpersonal.umich.edu/~amycohn/ 
PAPERS/ stamp.pdf. 
 
[4] A. Barlatt, A. Cohn, M. Luppino, and T. 
Zhou, "A Parallel Algorithm for Solving Re-
source Allocation and Scheduling Problems", 
INFORMS Midwestern Conference 2007  
http://www-personal.umich. edu/~amycohn/ 
CONFERENCES/Chicago.ppt. 
 
[5] A. Barlatt, A. Cohn, Y. Fradkin, O. 
Gusikhin, and C. Morford, "A Hybridization of 

Mathematical Programming and Search Tech-
niques for Integrated Operation and Workforce 
Planning", Proceedings from IEEE Conference 
on Systems, Man, and Cybernetics 2007, to ap-
pear. 
 
[6] A. Cohn and S. Root, "Scheduling Medical 
Residents at Boston University School of Medi-
cine", Working paper, 2007. 
http://www-personal.umich.edu/~  
amycohn/PAPERS/Interfaces%20oncall.pdf.  
 
[7] A. Cohn and S. Root, "Lessons Learned Ap-
plying Mathematical Programming Techniques 
to a Healthcare Scheduling Problem", Working 
paper, 2007, 
http://www-personal.umich.edu/~amycohn/ 
PAPERS/ joorscall.pdf. 
 
[8] T. Dias, D. Ferber, C. de Souza, and A. 
Moura, "Constructing Nurse Schedules at Large 
Hospitals", International Transactions in Op-
erational Research, Vol. 10, 2003, pp. 245-
265. 
 
[9] M. Ehrgott, Multicriteria Optimization. 
Springer, Berlin, 2005. 

 
[10] H. Raifa and R. Keeney, Decisions with 
Multiple Objectives: Preferences and Value 
Tradeoffs. Wiley, 1976. 


