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ABSTRACT 
 
This paper presents the deduction and logic implementation of 
the fractal scan algorithm based on the mathematical model of 
the optimal scan architecture. Through the exploration of the 
sub-space code sequences and bit code sequences for different 
gray levels, we deduce the general formulae for the sequences 
and propose the corresponding logic implementations. 
Moreover, the parameterized IP core for various gray levels, 
embedded in flat panel display scan controller, can efficiently 
increase the scan utilization and imaging quality. This research 
provides a new engineering way to solve a pressing problem of 
high resolution flat panel display technology. 
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1. INTRODUCTION 
 
The Flat Panel Display (FPD) that has been rapidly replacing 
bulky CRT based traditional displays plays an important role in 
exploring the progress of modern IT devices [1]. As the high 
resolution flat panel display technology for large display size 
has been one of the key research fields, one of the bottlenecks 
which impede the technology development from current small 
display-size flat panel displays to high resolution large 
display-size ones are low grayscale scan utilization and 
efficiency [3, 4]. Xu et al. [2, 3] proposed an innovative fractal 
scan structure which significantly increases scan efficiency. In 
their paper, they studied different scan schemes and constructed 
a mathematical model through the analysis of the fractal 
characteristics of space-time mapping topology. The theoretic 
model proved an optimal scan structure with maximum scan 
utilization. 
 
Based on the aforementioned mathematical model, this paper 
presents the logic implementation of the fractal scan algorithm 
as a fractal scan intellectual property (IP) core for various gray 
levels. Compared with traditional scan methods, simulation and 
real application show 100% scan utilization and a significant 
decrease of system clock frequency (a multiple of 29 for 256 
gray levels) [2, 3]. Thus, the paper provides a new light to 
solving one of the pressing problems of high resolution FPD 
technology. 
 
The remainder of this paper is organized into five sections. 
Section two introduces fractal scan topology. Section three 
presents the detailed deduction of the algorithm. Section four 

describes logic implementation of the algorithm. Section five 
describes design and simulation of the fractal scan IP core. 
Section six contains some concluding remarks. 
 
 

2. OVERVIEW OF THE FRACTAL SCAN 
ARCHITECTURE 

 
Fractal Space-time Mapping Topology 
A key to the research of grayscale image scan algorithm is to 
convert the grayscale storage matrix into pixel lightening time. 
Hence, a space-time mapping topology for grayscale scan can 
be constructed at first. The grayscale matrix in space is then 
mapped to a grayscale scan space-time plane. Based on this 
mapping architecture, the optimal scan structure is explored. 
Since the paper is mainly focused on the logic implementation 
of the optimal scan algorithm, interested readers can refer to the 
literature [3, 4, 5] for more details on different scan structures 
and methods. 
 
Consider a scan line and rotate it by 90 degrees backward. Then 
the line and the time axis form a time-space plane, in which the 
horizontal axis represents the pixels and the vertical axis the 
grayscale scan time. For n-bit grayscale (n bits in the binary 
representation of the gray level), the entire time-space plane is 
partitioned vertically into Mn smaller planes (sub-spaces), each 
being of the same width. In each sub-space, there are n scan bits 
(scan for n times). For simplicity of discussion, denote Hk as 
the grayscale weight of the kth scan bit, En as the sum of weight 
of each scan bit, and Tn as the total scan time which is the sum 
of En and the blanking interval. As the plane is divided into 2n-1 

sub-spaces, the optimal scan structure makes use of the interval 
in between two scans of the same pixel (in the same column) to 
scan the pixels in other sub-spaces. The new scan scheme, 
according to the fractal characteristics of the structure, takes 
full advantage of the time interval and achieves 100% scan 
utilization. Figure 1 shows the fractal scan topology for 16-bit 
grayscale (M4 = 8, En = 32 and Tn = 40). The black solid dot 
represents the bit being scanned. All the dots from t0 to t39 make 
a set of “Z” patterns. Each of the eight sub-spaces is scanned 5 
times in total at the time (vertical) axis. The scan distance for 
the first four scans is among 1 (H1=1), 3 (H2=3), 8 (H3=8) and 
20 (H4=20), which corresponds to the grayscale weight. At each 
time unit, only one sub-space is scanned. The last eight scans 
(t32 to t39) deal with blanking.  
 
It is easy to see in Figure 1 that each sub-space code (see 
column C) at each time unit is just the encoding assigned to that 
sub-space. In addition, there is a one-to-one correspondence 



 

between the grayscale weight and the bit code (see column D): 
for a weight of 20, the bit code is 3; for a weight of 10, the bit 
code is 2. Table 1 lists different weight sequences and bit code 
sequences for each of the eight sub-spaces.  
 

A B C D E 
 0 1 3 2 6 7 5 4    

t0 ●        0 3 0 

t1  ●       1 3 0 

t2   ●      3 3 0 

t3    ●     2 3 0 

t4     ●    6 2 0 

t5      ●   7 2 0 

t6       ●  5 1 0 

t7        ● 4 0 0 

t8        ● 4 1 0 

t9       ●  5 0 0 

t10       ●  5 2 0 

t11        ● 4 2 0 

t12     ●    6 1 0 

t13      ●   7 0 0 

t14      ●   7 1 0 

t15     ●    6 0 0 

t16     ●    6 3 0 

t17      ●   7 3 0 

t18       ●  5 3 0 

t19        ● 4 3 0 

t20 ●        0 2 0 

t21  ●       1 2 0 

t22   ●      3 1 0 

t23    ●     2 0 0 

t24    ●     2 1 0 

t25   ●      3 0 0 

t26   ●      3 2 0 

t27    ●     2 2 0 

t28 ●        0 1 0 

t29  ●       1 0 0 

t30  ●       1 1 0 

t31 ●        0 0 0 

t32 ●        0 － 1 

t33  ●       1 － 1 

t34   ●      3 － 1 

t35    ●     2 － 1 

t36     ●    6 － 1 

t37      ●   7 － 1 

t38       ●  5 － 1 

t39        ● 4 － 1 

A – Scan time, B – Sub-spaces, C – Sub-spaces code, D – Bit 
code, E – Blanking code 

Figure 1:  Fractal Scan Topology (n = 4) 
 
Block Diagram of the Fractal Scan Module 
The fractal scan module is shown in Figure 2. The function of 
the module is to implement the fractal algorithm in digital logic. 

In the figure, NB is the bit width of the bit code and NS the bit 
width of the sub-space code. NB is determined by the gray 
levels and NS by the scan scheme. Since there are 2n-1 
sub-spaces for n-bit grayscale, 2logNB n= and NS = n-1. At 
the positive edge of the clock when GetNext is asserted 
(GetNext = 1), the module outputs current bit code Bit[NB-1:0], 
sub-space code Segment[NS-1:0], and the Hidden signal to 
control row/column addresses and gray value. 
 
To avoid circuit hazards, the eight sub-spaces are encoded with 
the Gray code which has the property that when advancing 
from one index to the next adjacent index, only a single bit 
changes value. In actual hardware design, quasi-Gray code is 
adopted. 
 

Sub-space 
encoding 

Weight 
sequences 

Bit code 
sequences 

0 20  8  3  1 3  2  1  0 
1 20  8  1  3 3  2  0  1 
3 20  3  1  8 3  1  0  2 
2 20  1  3  8 3  0  1  2 
6   8  3  1  20 2  1  0  3 
7   8  1  3  20 2  0  1  3 
5   3  1  8  20 1  0  2  3 
4   1  3  8  20 0  1  2  3 

Table 1:  Weight and Bit Sequences (n = 4) 
 

 
Figure 2:  Block Diagram of the Fractal Scan Module 

 
 
3. DEDUCTION AND DESCRIPTION OF THE 

FRACTAL SCAN ALGORITHM 
 
It is appropriate to briefly go through some basic terminology 
associated with sequences. Sequences of math are a string of 
numbers that are tied together with some sort of consistent rule, 
or set of rules, that determines the next number in the sequence. 
Formally, the string of numbers is referred to as terms of a 
sequence. The formula for the nth (general) term is always used 
to represent a given sequence.  
 
To represent different forms of sequences, the following naming 
conventions are used: 
The braces, { }, are used to enclose all the terms of a sequence. 
Hence, {A} means the sequence A. 
{A, B} : the union of the sequence A and B 
A : k : the kth term of the sequence A 
!A : the complement of the sequence A 
{A}n : Repeat the sequence A for n times 
A + d : Add the numeral d to each term in the sequence A  
|A| : the number of terms in the sequence A 
 
Deduction of the Sub-space Sequence and      Bit Code 
Sequence 
According to the notations above, all the relevant sequences are 
defined as follows for n-bit (n>0) gray- scale: 
Zn: a sequence containing all the sub-space codes from 0 to Tn 



 

Bn: a sequence containing all the bit codes from 0 to TEn – 1 
Xn: a sequence containing the first | Bn | terms of Zn 
Pn: n-bit Gray code sequence 
Pn:1: a sequence containing the first half terms of Pn 
Pn:2: a sequence containing the second half terms of Pn 
 
For n = 1, there is only one sub-space and two scan time units 
for scan and blanking respectively. Thus, we have 
 

Z1 = {0, 0}, B1 = {0}, X 1 = {0}           Eq.(1) 
 
Similarly, for n = 2, we have 
 

Z2 = {0, 1, 1, 0, 0, 1, 1, 0, 0, 1},  
B2 = {1, 0, 1, 0, 1, 0, 1, 0},   
X2 = {0, 1, 1, 0, 0, 1, 1, 0}. 

 
Obviously, the complexity of the sequences (n>2) requires a 
general method to deduce each sequence in a systematic way. 
In the following paragraphs, we describe how to formulate the 
sequences Zn, Bn and Xn.  

 
Figure 3:  Space Partitions for n-bit Grayscale 

 
The entire fractal scan process as shown in Figure 1 can be 
artificially divided into distinct phases. Figure 3 illustrates the 
partitions where there are a total of five scan phases. For 
simplicity of description, 16-bit grayscale scan is still assumed. 
The first phase covers Mn-1 (2

n-2) scan time. From Figure 1, this 
corresponds to the first four sub-spaces (0, 1, 3, 2) from t0 to t3 

with the first four terms of Bn (n = 4) all equal to 3 (namely n-1) 
and the first four terms of Xn being the first half terms of the 
Gray code sequence Pn-1:1. The second phase covers the second 
four sub-spaces (6, 7, 5, 4) from t4 to t15 with the corresponding 
12 terms in Bn equal to all the terms of the sequence Bn-1. The 
12 terms of Xn are similar to all the terms of Xn-1 except that 
each term of Xn derives from each term in Xn-1 XORed with 
(2n-2+2n-3). Note that the expression (2n-2+2n-3) is exactly the 
fifth term of Xn (or the first term of Xn in the second phase). 
The third phase corresponds to the second four sub-spaces from 
t16 to t19 with each term of Bn equal to 3 and the terms of Xn 
being the second half terms of the Gray code sequence Pn-1:2. 
The fourth phase covers the first four sub-spaces from t20 to t31 
and the corresponding 12 terms of Bn and Xn are equal to those 
of Bn-1 and Xn-1 respectively. The fifth phase is blanking 
interval and the corresponding terms of Xn are all the terms of 
Pn-1. 
 
By combining the terms in each phase of the sequence, we 
deduce the following general sequences in a total of Tn scan 
time. 
 

Bn = {{n-1} 2n-2
, Bn-1, {n-1} 2n-2

, Bn-1}              Eq.(2) 
Xn = {Pn-1:1, (2

n-2+2n-3)  X⊕ n-1, Pn-1:2, Xn-1}     Eq.(3) 
 Zn = {X n, Pn-1}                               Eq.(4) 

 

Characteristics of the Bit Code Sequence 
Since the general formula for each sequence is deduced, it is 
necessary to analyze the characteristics of the sequences as a 
basis for logic implementation. From Figure 1 and Eq.(2), we 
can obtain the following characteristics of Bn when n = 4. 
 
1) The term with the number 3 (k = 3), of Bn occurs 
consecutively for 2k-1 times in the first and third phases, and the 
term with the number 0 only occurs for one time. 
 
2) When entering the second phase from the first one, if the last 
term (from the perspective of the first phase) is non-zero, then 
the first term in the second phase is minus one from the last 
term. In Figure 1, we see that three minus one is two. The same 
relationship holds for the two adjacent terms in the third and 
fourth phases. 
 
3.1) In the second and fourth phases, If k (k = 1, 2) occurs 
consecutively for odd times prior to a term of zero, then the 
term after the said term also equals to k. 
 
3.2) In the second phase, if k (k = 1, 2) occurs consecutively for 
even times prior to a term of zero, then the next phase will be 
the third phase. 
 
3.3) In the fourth phase, if k (k = 1, 2, 3) occurs consecutively 
for even times prior to a term of zero, then the next phase will 
be the fifth phase. 
 
Characteristics of the Sub-space Code Sequence 
From Eq.(1), Eq.(2) and Eq.(3), we can deduce that for a k 
sequence terms, the first and the last terms of the sequence Xn 
(n = k) equal zero, and the last term of the sequence Bn (n = k) 
is also zero. 
 
Through analysis of the Zn sequence terms in each of the five 
phases (since Zn contains all the terms of Xn, we only focus on 
Zn), the following results can be found:  
 
In the first phase of Zn, the first term is zero and the last term is 
2n-3; In the second phase, both the first term and the last term 
are (2n-2+2n-3); In the third phase, the first term is (2n-2+2n-3) and 
the last term is 2n-2; In the fourth phase, both the first and the 
last term are zeroes. In the fifth phase, the first term is zero and 
the last term is 2n-2. 
 
Then consider the adjacent terms of the two consecutive phases. 
The first term in the second phase is the next Gray code bits; 
the last term in the second phase and the first one in the third 
phase are the same; the last one in the third phase is 2 n-2 and the 
first one in the fourth phase is 0; the two terms in the fourth and 
fifth phases are zeroes. 
 
By collecting these findings, we can reach the following 
conclusions: 
 
1) The last term in the second (fourth) phase and the first term 
of the third (fifth) phase are identical. 
 
2) The first term in the fourth phase derives from the last term 
in the third phase XORed with 2n-2. 
 

3) In other cases, the next terms of the sequence Xn are either 
those of the sequence Xn-1 or the next Gray codes. 
 
Since the characteristics of Bn can be made use of to determine 
the boundary of the consecutive phases and there is a 



 

one-to-one correspondence between the terms of Bn and Xn, the 
characteristics of Xn can be formulated as follows: 
 
1) If the current term of Bn is zero, then the next term of Xn is 
the same as the current term of Xn. Namely, 
 

Xn : (k+1) = Xn : k                  Eq.(5) 
 
2) If the current term of Bn is the last term prior to a set of 
consecutive terms which occur for i times (i is an even number), 
then the next term of Xn is the current term of Xn XORed with 
2i-1. Namely, 
 

Xn : (k+1) = Xn : k ⊕ 2 i-1            Eq.(6) 
 
 

4. LOGIC IMPLEMENTATION OF THE 
ALGORITHM 

 
Implementation of the Bit Code Sequence    
From section three, we see that the Bn sequence also plays a 
vital role in deducing a general formula of Xn. So it is 
reasonable to implement Bn first. Without the general formula 
getting in the way or cluttering up the picture, a state transition 
diagram for 16-bit grayscale to generate the B4 sequence is 
shown in Figure 4. Since there are four unique numerals (i.e., 3, 
2, 1, 0) in B4, four states B3, B2, B1, B0 are needed. In addition, 
state Bend indicates blanking interval in the fifth phase. 
Suppose array K has three elements K[3], K[2] and K[1], and 
each of which indicates either the odd or even number of 
consecutive occurrences of the corresponding numeral. For 
example, if K[2] = 1, then the numeral 2 occurs consecutively 
for the odd number of times. The signal Finish in Figure 4 is 
asserted after blanking interval.    

B3

B2

B1

B0

Bend

If Finish, K[2]=1, D[2]=!K[3]

4 counts

2 counts

8 counts

K[3:1]=100

Reset

If Finish, K[1]=1, D[1]=!K[2]

If Finish, K[3]=1

D[0]=!K[1]

K[3:1]=000

If K[1]=1, 

K[1]=0

If K[2:1]=10, 

K[2]=0

If K[3:1]=100, 

K[3]=0

 
Figure 4:  State Transition Diagram for Bit Code                             

      Sequence (n = 4) 
 
The finite state machine operates as follows: it enters B3 after 
initialization with K[3:1] = 100 representing B3 is entered for 
the first time. In B3, it outputs the numeral 3 for four 
consecutive times. Then the state transitions to B2 and K[2] is 
set(i.e., K[2] = 1). After the output of 2 for two consecutive 
times in B2, it enters B1. In B1, it sets K[1], outputs 1 for one 
time and goes to B0. In B0, it outputs zero for one time and go 

to the next state specified by K[3:1]. If K[1] is set, then an odd 
number of 1s has been seen. So the next state is B1 and K[1] is 
cleared to indicate an even number of transitions to B1. The 
condition that K[1] is cleared and K[2] set indicates the 
numeral 2 has been seen consecutively for odd times. So the 
next state is B2 for the output of the numeral 2 and K[1] is 
cleared to indicate an even number of transitions to B2. 
 
If K[3] alone is set, then the next state is B3 for the output of 
the numeral 2 and K[3] is cleared to indicate an even number of 
transitions to B3. If K = 000, the next state is Bend. In Bend, 
the state outputs Gray code in sequence, sets K[3] and 
transitions to B3 for the next turn of the same entire operation 
above. Through careful observation of the output numerals in 
each state, the state encodings themselves can be made use of to 
generate the bit code sequence and the Hidden signal. With five 
states we encode the states so that they are identical to the 
outputs. An assignment of 011, 010, 001, 000 and 100 for the 
three states bits is chosen for the states B3, B2, B1, B0 and 
Bend. Consequently, each term of Bn, represented by Bit[1:0],  
and the Hidden signal, are assigned in the following manner 
(assume BST is the current state encoding): 
 

Bit[1:0] = BST[1:0]; 
Hidden = BST[2];                Eq. (7) 

 
Implementation of the Sub-space Code Sequence 
The state diagram to generate the Xn sequence is also shown in 
Figure 4. Similar to the function of array K, array D specifies 
the next term of the Xn sequence. According to (5) and (6), if 
B0 is the current state, then sel = 1 and D = 0, indicating that 
the next term of X4 is the same as the current one. For example, 
in Figure 1, the terms of X4 at t7 and t8 are identical (both equal 
4); if B1(B2) is the current state, then D[0]=!K[1] (D[1]=!K[2]), 
indicating that the next term of X4 is the current term XORed 
with the numeral 1(2). So the general conclusion can be 
reached that if Bi is the current state, then D[i-1]=!K[i]. The 
next term of Xn is the current one XORed with 2i-1. The input 
signal Sel, from the current state module, controls the 
multiplexer (MUX) to select between the output of the Gray 
locator (Sel = 0) and the array D (Sel = 1).  
 
 

5. DESIGN AND SIMULATION OF THE 
FRACTAL SCAN IP CORE 

 
To meet the requirement of different grayscale scans, we design 
a parameterized module which covers from a minimum of 4 to a 
maximum of 65536 gray levels. 
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Figure 5:  Block Diagram of the Fractal Scan IP Core 

 



 

Design of the Fractal Scan IP core 
The block diagram of the core is illustrated in Figure 5. In this 
figure, Gray Location Code and Parity Flag generate the next 
gray code for the current sub-space code Segment. BST is the 
current state encoding in Figure 4. The control modules, Count 
and Finish, record the current counting state. Bit Code Parity 
Count K records the number of occurrences for each state. 
 
Next state code, NextBST, is the code generated for the next 
clock cycle. Note that the current state is the combination of 
BST, current count state and K to generate, for the next 
sub-space, bit code select signal Sel, transition code D as well 
as the bit code (Bit), blanking code (Hidden) and cycle done 
code (Last). The XOR logic and the multiplexer output the next 
sub-space code NextSeg. 
 
Simulation & Results 
For a parameterized IP core, we can obtain simulation 
waveforms for various grayscales. Figure 7 shows the 

waveform for 16-bit grayscale (n=4，NB=2) in the Active 
HDL™ software environment. At the 10MHz clock frequency, 
the simulation waveform displays the code sequences Segment, 
Bit and Hidden as expected in Figure 1. 
 
 

6. CONCLUDING REMARKS 
 
In this paper, the deduction and logic implementation of the 
fractal scan algorithm are described in details. The fractal 
scanning IP core, embedded in the FPGA hardware frame for 
scan controller, has successfully increased image quality. In 
addition, replacing the traditional serial scanning method with 
the technique of parallel column decoding, we have 
significantly raised the system's frame frequency. Real 
application verifies that high resolution image display can be 
achieved in our system. What is more, FPD driver circuit cost 
can be reduced without high-speed circuits and a new approach 
to grayscale scan control has been established. 

 

Figure 7:  Simulation Waveform for 16-bit Grayscale 
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