

Deduction and Logic Implementation of the Fractal Scan Algorithm

Zhangjin Chen, Feng Ran, Zheming Jin

Microelectronic R&D center, Shanghai University
Shanghai, China

and

Meihua Xu

School of Mechatronical Engineering and Automation, Shanghai University
Shanghai, China

ABSTRACT

This paper presents the deduction and logic implementation of
the fractal scan algorithm based on the mathematical model of
the optimal scan architecture. Through the exploration of the
sub-space code sequences and bit code sequences for different
gray levels, we deduce the general formulae for the sequences
and propose the corresponding logic implementations.
Moreover, the parameterized IP core for various gray levels,
embedded in flat panel display scan controller, can efficiently
increase the scan utilization and imaging quality. This research
provides a new engineering way to solve a pressing problem of
high resolution flat panel display technology.

Keywords: Flat Panel Display, Logic Implementation, Fractal
Scan Algorithm, Code Sequence, IP Core

1. INTRODUCTION

The Flat Panel Display (FPD) that has been rapidly replacing
bulky CRT based traditional displays plays an important role in
exploring the progress of modern IT devices [1]. As the high
resolution flat panel display technology for large display size
has been one of the key research fields, one of the bottlenecks
which impede the technology development from current small
display-size flat panel displays to high resolution large
display-size ones are low grayscale scan utilization and
efficiency [3, 4]. Xu et al. [2, 3] proposed an innovative fractal
scan structure which significantly increases scan efficiency. In
their paper, they studied different scan schemes and constructed
a mathematical model through the analysis of the fractal
characteristics of space-time mapping topology. The theoretic
model proved an optimal scan structure with maximum scan
utilization.

Based on the aforementioned mathematical model, this paper
presents the logic implementation of the fractal scan algorithm
as a fractal scan intellectual property (IP) core for various gray
levels. Compared with traditional scan methods, simulation and
real application show 100% scan utilization and a significant
decrease of system clock frequency (a multiple of 29 for 256
gray levels) [2, 3]. Thus, the paper provides a new light to
solving one of the pressing problems of high resolution FPD
technology.

The remainder of this paper is organized into five sections.
Section two introduces fractal scan topology. Section three
presents the detailed deduction of the algorithm. Section four

describes logic implementation of the algorithm. Section five
describes design and simulation of the fractal scan IP core.
Section six contains some concluding remarks.

2. OVERVIEW OF THE FRACTAL SCAN
ARCHITECTURE

Fractal Space-time Mapping Topology
A key to the research of grayscale image scan algorithm is to
convert the grayscale storage matrix into pixel lightening time.
Hence, a space-time mapping topology for grayscale scan can
be constructed at first. The grayscale matrix in space is then
mapped to a grayscale scan space-time plane. Based on this
mapping architecture, the optimal scan structure is explored.
Since the paper is mainly focused on the logic implementation
of the optimal scan algorithm, interested readers can refer to the
literature [3, 4, 5] for more details on different scan structures
and methods.

Consider a scan line and rotate it by 90 degrees backward. Then
the line and the time axis form a time-space plane, in which the
horizontal axis represents the pixels and the vertical axis the
grayscale scan time. For n-bit grayscale (n bits in the binary
representation of the gray level), the entire time-space plane is
partitioned vertically into Mn smaller planes (sub-spaces), each
being of the same width. In each sub-space, there are n scan bits
(scan for n times). For simplicity of discussion, denote Hk as
the grayscale weight of the kth scan bit, En as the sum of weight
of each scan bit, and Tn as the total scan time which is the sum
of En and the blanking interval. As the plane is divided into 2n-1

sub-spaces, the optimal scan structure makes use of the interval
in between two scans of the same pixel (in the same column) to
scan the pixels in other sub-spaces. The new scan scheme,
according to the fractal characteristics of the structure, takes
full advantage of the time interval and achieves 100% scan
utilization. Figure 1 shows the fractal scan topology for 16-bit
grayscale (M4 = 8, En = 32 and Tn = 40). The black solid dot
represents the bit being scanned. All the dots from t0 to t39 make
a set of “Z” patterns. Each of the eight sub-spaces is scanned 5
times in total at the time (vertical) axis. The scan distance for
the first four scans is among 1 (H1=1), 3 (H2=3), 8 (H3=8) and
20 (H4=20), which corresponds to the grayscale weight. At each
time unit, only one sub-space is scanned. The last eight scans
(t32 to t39) deal with blanking.

It is easy to see in Figure 1 that each sub-space code (see
column C) at each time unit is just the encoding assigned to that
sub-space. In addition, there is a one-to-one correspondence

between the grayscale weight and the bit code (see column D):
for a weight of 20, the bit code is 3; for a weight of 10, the bit
code is 2. Table 1 lists different weight sequences and bit code
sequences for each of the eight sub-spaces.

A B C D E
 0 1 3 2 6 7 5 4

t0 ● 0 3 0

t1 ● 1 3 0

t2 ● 3 3 0

t3 ● 2 3 0

t4 ● 6 2 0

t5 ● 7 2 0

t6 ● 5 1 0

t7 ● 4 0 0

t8 ● 4 1 0

t9 ● 5 0 0

t10 ● 5 2 0

t11 ● 4 2 0

t12 ● 6 1 0

t13 ● 7 0 0

t14 ● 7 1 0

t15 ● 6 0 0

t16 ● 6 3 0

t17 ● 7 3 0

t18 ● 5 3 0

t19 ● 4 3 0

t20 ● 0 2 0

t21 ● 1 2 0

t22 ● 3 1 0

t23 ● 2 0 0

t24 ● 2 1 0

t25 ● 3 0 0

t26 ● 3 2 0

t27 ● 2 2 0

t28 ● 0 1 0

t29 ● 1 0 0

t30 ● 1 1 0

t31 ● 0 0 0

t32 ● 0 － 1

t33 ● 1 － 1

t34 ● 3 － 1

t35 ● 2 － 1

t36 ● 6 － 1

t37 ● 7 － 1

t38 ● 5 － 1

t39 ● 4 － 1

A – Scan time, B – Sub-spaces, C – Sub-spaces code, D – Bit
code, E – Blanking code

Figure 1: Fractal Scan Topology (n = 4)

Block Diagram of the Fractal Scan Module
The fractal scan module is shown in Figure 2. The function of
the module is to implement the fractal algorithm in digital logic.

In the figure, NB is the bit width of the bit code and NS the bit
width of the sub-space code. NB is determined by the gray
levels and NS by the scan scheme. Since there are 2n-1
sub-spaces for n-bit grayscale, 2logNB n= and NS = n-1. At
the positive edge of the clock when GetNext is asserted
(GetNext = 1), the module outputs current bit code Bit[NB-1:0],
sub-space code Segment[NS-1:0], and the Hidden signal to
control row/column addresses and gray value.

To avoid circuit hazards, the eight sub-spaces are encoded with
the Gray code which has the property that when advancing
from one index to the next adjacent index, only a single bit
changes value. In actual hardware design, quasi-Gray code is
adopted.

Sub-space
encoding

Weight
sequences

Bit code
sequences

0 20 8 3 1 3 2 1 0
1 20 8 1 3 3 2 0 1
3 20 3 1 8 3 1 0 2
2 20 1 3 8 3 0 1 2
6 8 3 1 20 2 1 0 3
7 8 1 3 20 2 0 1 3
5 3 1 8 20 1 0 2 3
4 1 3 8 20 0 1 2 3

Table 1: Weight and Bit Sequences (n = 4)

Figure 2: Block Diagram of the Fractal Scan Module

3. DEDUCTION AND DESCRIPTION OF THE

FRACTAL SCAN ALGORITHM

It is appropriate to briefly go through some basic terminology
associated with sequences. Sequences of math are a string of
numbers that are tied together with some sort of consistent rule,
or set of rules, that determines the next number in the sequence.
Formally, the string of numbers is referred to as terms of a
sequence. The formula for the nth (general) term is always used
to represent a given sequence.

To represent different forms of sequences, the following naming
conventions are used:
The braces, { }, are used to enclose all the terms of a sequence.
Hence, {A} means the sequence A.
{A, B} : the union of the sequence A and B
A : k : the kth term of the sequence A
!A : the complement of the sequence A
{A}n : Repeat the sequence A for n times
A + d : Add the numeral d to each term in the sequence A
|A| : the number of terms in the sequence A

Deduction of the Sub-space Sequence and Bit Code
Sequence
According to the notations above, all the relevant sequences are
defined as follows for n-bit (n>0) gray- scale:
Zn: a sequence containing all the sub-space codes from 0 to Tn

Bn: a sequence containing all the bit codes from 0 to TEn – 1
Xn: a sequence containing the first | Bn | terms of Zn
Pn: n-bit Gray code sequence
Pn:1: a sequence containing the first half terms of Pn
Pn:2: a sequence containing the second half terms of Pn

For n = 1, there is only one sub-space and two scan time units
for scan and blanking respectively. Thus, we have

Z1 = {0, 0}, B1 = {0}, X 1 = {0} Eq.(1)

Similarly, for n = 2, we have

Z2 = {0, 1, 1, 0, 0, 1, 1, 0, 0, 1},
B2 = {1, 0, 1, 0, 1, 0, 1, 0},
X2 = {0, 1, 1, 0, 0, 1, 1, 0}.

Obviously, the complexity of the sequences (n>2) requires a
general method to deduce each sequence in a systematic way.
In the following paragraphs, we describe how to formulate the
sequences Zn, Bn and Xn.

Figure 3: Space Partitions for n-bit Grayscale

The entire fractal scan process as shown in Figure 1 can be
artificially divided into distinct phases. Figure 3 illustrates the
partitions where there are a total of five scan phases. For
simplicity of description, 16-bit grayscale scan is still assumed.
The first phase covers Mn-1 (2

n-2) scan time. From Figure 1, this
corresponds to the first four sub-spaces (0, 1, 3, 2) from t0 to t3

with the first four terms of Bn (n = 4) all equal to 3 (namely n-1)
and the first four terms of Xn being the first half terms of the
Gray code sequence Pn-1:1. The second phase covers the second
four sub-spaces (6, 7, 5, 4) from t4 to t15 with the corresponding
12 terms in Bn equal to all the terms of the sequence Bn-1. The
12 terms of Xn are similar to all the terms of Xn-1 except that
each term of Xn derives from each term in Xn-1 XORed with
(2n-2+2n-3). Note that the expression (2n-2+2n-3) is exactly the
fifth term of Xn (or the first term of Xn in the second phase).
The third phase corresponds to the second four sub-spaces from
t16 to t19 with each term of Bn equal to 3 and the terms of Xn
being the second half terms of the Gray code sequence Pn-1:2.
The fourth phase covers the first four sub-spaces from t20 to t31
and the corresponding 12 terms of Bn and Xn are equal to those
of Bn-1 and Xn-1 respectively. The fifth phase is blanking
interval and the corresponding terms of Xn are all the terms of
Pn-1.

By combining the terms in each phase of the sequence, we
deduce the following general sequences in a total of Tn scan
time.

Bn = {{n-1} 2n-2
, Bn-1, {n-1} 2n-2

, Bn-1} Eq.(2)
Xn = {Pn-1:1, (2

n-2+2n-3) X⊕ n-1, Pn-1:2, Xn-1} Eq.(3)
 Zn = {X n, Pn-1} Eq.(4)

Characteristics of the Bit Code Sequence
Since the general formula for each sequence is deduced, it is
necessary to analyze the characteristics of the sequences as a
basis for logic implementation. From Figure 1 and Eq.(2), we
can obtain the following characteristics of Bn when n = 4.

1) The term with the number 3 (k = 3), of Bn occurs
consecutively for 2k-1 times in the first and third phases, and the
term with the number 0 only occurs for one time.

2) When entering the second phase from the first one, if the last
term (from the perspective of the first phase) is non-zero, then
the first term in the second phase is minus one from the last
term. In Figure 1, we see that three minus one is two. The same
relationship holds for the two adjacent terms in the third and
fourth phases.

3.1) In the second and fourth phases, If k (k = 1, 2) occurs
consecutively for odd times prior to a term of zero, then the
term after the said term also equals to k.

3.2) In the second phase, if k (k = 1, 2) occurs consecutively for
even times prior to a term of zero, then the next phase will be
the third phase.

3.3) In the fourth phase, if k (k = 1, 2, 3) occurs consecutively
for even times prior to a term of zero, then the next phase will
be the fifth phase.

Characteristics of the Sub-space Code Sequence
From Eq.(1), Eq.(2) and Eq.(3), we can deduce that for a k
sequence terms, the first and the last terms of the sequence Xn
(n = k) equal zero, and the last term of the sequence Bn (n = k)
is also zero.

Through analysis of the Zn sequence terms in each of the five
phases (since Zn contains all the terms of Xn, we only focus on
Zn), the following results can be found:

In the first phase of Zn, the first term is zero and the last term is
2n-3; In the second phase, both the first term and the last term
are (2n-2+2n-3); In the third phase, the first term is (2n-2+2n-3) and
the last term is 2n-2; In the fourth phase, both the first and the
last term are zeroes. In the fifth phase, the first term is zero and
the last term is 2n-2.

Then consider the adjacent terms of the two consecutive phases.
The first term in the second phase is the next Gray code bits;
the last term in the second phase and the first one in the third
phase are the same; the last one in the third phase is 2 n-2 and the
first one in the fourth phase is 0; the two terms in the fourth and
fifth phases are zeroes.

By collecting these findings, we can reach the following
conclusions:

1) The last term in the second (fourth) phase and the first term
of the third (fifth) phase are identical.

2) The first term in the fourth phase derives from the last term
in the third phase XORed with 2n-2.

3) In other cases, the next terms of the sequence Xn are either
those of the sequence Xn-1 or the next Gray codes.

Since the characteristics of Bn can be made use of to determine
the boundary of the consecutive phases and there is a

one-to-one correspondence between the terms of Bn and Xn, the
characteristics of Xn can be formulated as follows:

1) If the current term of Bn is zero, then the next term of Xn is
the same as the current term of Xn. Namely,

Xn : (k+1) = Xn : k Eq.(5)

2) If the current term of Bn is the last term prior to a set of
consecutive terms which occur for i times (i is an even number),
then the next term of Xn is the current term of Xn XORed with
2i-1. Namely,

Xn : (k+1) = Xn : k ⊕ 2 i-1 Eq.(6)

4. LOGIC IMPLEMENTATION OF THE
ALGORITHM

Implementation of the Bit Code Sequence
From section three, we see that the Bn sequence also plays a
vital role in deducing a general formula of Xn. So it is
reasonable to implement Bn first. Without the general formula
getting in the way or cluttering up the picture, a state transition
diagram for 16-bit grayscale to generate the B4 sequence is
shown in Figure 4. Since there are four unique numerals (i.e., 3,
2, 1, 0) in B4, four states B3, B2, B1, B0 are needed. In addition,
state Bend indicates blanking interval in the fifth phase.
Suppose array K has three elements K[3], K[2] and K[1], and
each of which indicates either the odd or even number of
consecutive occurrences of the corresponding numeral. For
example, if K[2] = 1, then the numeral 2 occurs consecutively
for the odd number of times. The signal Finish in Figure 4 is
asserted after blanking interval.

B3

B2

B1

B0

Bend

If Finish, K[2]=1, D[2]=!K[3]

4 counts

2 counts

8 counts

K[3:1]=100

Reset

If Finish, K[1]=1, D[1]=!K[2]

If Finish, K[3]=1

D[0]=!K[1]

K[3:1]=000

If K[1]=1,

K[1]=0

If K[2:1]=10,

K[2]=0

If K[3:1]=100,

K[3]=0

Figure 4: State Transition Diagram for Bit Code

 Sequence (n = 4)

The finite state machine operates as follows: it enters B3 after
initialization with K[3:1] = 100 representing B3 is entered for
the first time. In B3, it outputs the numeral 3 for four
consecutive times. Then the state transitions to B2 and K[2] is
set(i.e., K[2] = 1). After the output of 2 for two consecutive
times in B2, it enters B1. In B1, it sets K[1], outputs 1 for one
time and goes to B0. In B0, it outputs zero for one time and go

to the next state specified by K[3:1]. If K[1] is set, then an odd
number of 1s has been seen. So the next state is B1 and K[1] is
cleared to indicate an even number of transitions to B1. The
condition that K[1] is cleared and K[2] set indicates the
numeral 2 has been seen consecutively for odd times. So the
next state is B2 for the output of the numeral 2 and K[1] is
cleared to indicate an even number of transitions to B2.

If K[3] alone is set, then the next state is B3 for the output of
the numeral 2 and K[3] is cleared to indicate an even number of
transitions to B3. If K = 000, the next state is Bend. In Bend,
the state outputs Gray code in sequence, sets K[3] and
transitions to B3 for the next turn of the same entire operation
above. Through careful observation of the output numerals in
each state, the state encodings themselves can be made use of to
generate the bit code sequence and the Hidden signal. With five
states we encode the states so that they are identical to the
outputs. An assignment of 011, 010, 001, 000 and 100 for the
three states bits is chosen for the states B3, B2, B1, B0 and
Bend. Consequently, each term of Bn, represented by Bit[1:0],
and the Hidden signal, are assigned in the following manner
(assume BST is the current state encoding):

Bit[1:0] = BST[1:0];
Hidden = BST[2]; Eq. (7)

Implementation of the Sub-space Code Sequence
The state diagram to generate the Xn sequence is also shown in
Figure 4. Similar to the function of array K, array D specifies
the next term of the Xn sequence. According to (5) and (6), if
B0 is the current state, then sel = 1 and D = 0, indicating that
the next term of X4 is the same as the current one. For example,
in Figure 1, the terms of X4 at t7 and t8 are identical (both equal
4); if B1(B2) is the current state, then D[0]=!K[1] (D[1]=!K[2]),
indicating that the next term of X4 is the current term XORed
with the numeral 1(2). So the general conclusion can be
reached that if Bi is the current state, then D[i-1]=!K[i]. The
next term of Xn is the current one XORed with 2i-1. The input
signal Sel, from the current state module, controls the
multiplexer (MUX) to select between the output of the Gray
locator (Sel = 0) and the array D (Sel = 1).

5. DESIGN AND SIMULATION OF THE
FRACTAL SCAN IP CORE

To meet the requirement of different grayscale scans, we design
a parameterized module which covers from a minimum of 4 to a
maximum of 65536 gray levels.

D
Segment

Bit

Hidden

Sel

GCLK/
GetNext/
rstn

XOR Sync

Gray

Location

Code

Current
State

Module

Parity
Flag

Count

Finish

BST

Bit Code Parity

Count K

NextBST

NextSeg

M
U

X

Last

Figure 5: Block Diagram of the Fractal Scan IP Core

Design of the Fractal Scan IP core
The block diagram of the core is illustrated in Figure 5. In this
figure, Gray Location Code and Parity Flag generate the next
gray code for the current sub-space code Segment. BST is the
current state encoding in Figure 4. The control modules, Count
and Finish, record the current counting state. Bit Code Parity
Count K records the number of occurrences for each state.

Next state code, NextBST, is the code generated for the next
clock cycle. Note that the current state is the combination of
BST, current count state and K to generate, for the next
sub-space, bit code select signal Sel, transition code D as well
as the bit code (Bit), blanking code (Hidden) and cycle done
code (Last). The XOR logic and the multiplexer output the next
sub-space code NextSeg.

Simulation & Results
For a parameterized IP core, we can obtain simulation
waveforms for various grayscales. Figure 7 shows the

waveform for 16-bit grayscale (n=4，NB=2) in the Active
HDL™ software environment. At the 10MHz clock frequency,
the simulation waveform displays the code sequences Segment,
Bit and Hidden as expected in Figure 1.

6. CONCLUDING REMARKS

In this paper, the deduction and logic implementation of the
fractal scan algorithm are described in details. The fractal
scanning IP core, embedded in the FPGA hardware frame for
scan controller, has successfully increased image quality. In
addition, replacing the traditional serial scanning method with
the technique of parallel column decoding, we have
significantly raised the system's frame frequency. Real
application verifies that high resolution image display can be
achieved in our system. What is more, FPD driver circuit cost
can be reduced without high-speed circuits and a new approach
to grayscale scan control has been established.

Figure 7: Simulation Waveform for 16-bit Grayscale

7. REFERENCES

[1] Kyuha Chung, Mun Pyo Hong, Chi Woo Kim, Innum Kang,

“Needs and solutions of future flat panel display for
information technology industry”. Electron Devices
Meeting, 2002, pp. 385 – 388

[2] Meihua Xu, Chen, Zhang-Jin, Ran Feng, He You-Hua.
“Optimal scanning architecture and fractal model for flat
panel display system”. Acta Electronica Sinica, vol 34, No.
8, August, 2006, pp. 1376 – 1380

[3] Meihua Xu, “Fractal Methodology Research and IP core
Implementation for FPD Gray Scale Controlling”,
Doctoral Dissertation, Shanghai University, 2006.

[4] Meihua Xu, Zhangjin Chen, Feng Ran, “The Scanning
Methodology Research based on Space-time Mapping
Optimization”, Dynamics of continuous, discrete and
impulsive systems, series A: Mathematical analysis, 2006,
VL 13, Part 3 Suppl., pp.1093-1101

[5] Zhangjin Chen, Feng Chen, Meihua Xu, Zheming Jin,
“OLED-FPD Interface Implementation on Chip with
Random Write-only Memory Mode”, Proceedings of Asia
Display, 2007, pp.1406-1411.

[6] Zhangjin Chen, Meihua Xu, Feng Ran, “Serial
Synchronous Multi-buffer Scanning in FPD”, Journal of
Shanghai University (English Version), 2007.6，Vol.11 No.3:
pp.314-317

8. ACKNOWLEDGMENTS

The authors would like to acknowledge the National Natural
Science Foundation of China for providing financial support for
this work under Grant No. 60773081 and Grant No. 60777018,
and also to acknowledge the financial support by the Shanghai

Municipal Committee under Grant No.AZ028 and Grant
No.06DZ22013

Zhangjin Chen is an associate professor of the Computer Center
at Shanghai University. His research interests include digital IC
design, high resolution flat panel display technology and system
integration. He has finished more than 30 research projects and
published about 30 technical papers. He holds the BS and the
MS in computer science from Shanghai University.

