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ABSTRACT 

 
Model checking has undoubtedly emerged as one of the most 
effective formal methods for verifying finite, concurrent 
systems automatically. The most significant problem of model 
checking is the state space explosion problem occurring in 
large, complex systems where components can make transitions 
in parallel. Consequently, extending an existing system with one 
or more components can lead to an exponential increase in the 
state space, causing serious problems for model checking tools. 
The approach of Open Incremental Model Checking (OIMC) is 
trying to compensate these difficulties by focusing exclusively 
on the changes of a system instead of rechecking the entire 
extended system including both the original and the new 
components. In this paper we study the practical and 
educational aspects of this new method strongly emphasizing 
the role of granularity and scalability, meanwhile intending to 
show also its efficiency. A sample system is used to illustrate 
the scalability of the extension of a given system. 
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1. INTRODUCTION 
 

Model checking has undoubtedly emerged as one of the most 
effective formal methods for verifying finite, concurrent 
systems automatically [2]. The most significant problem of 
model checking is the state space explosion problem occurring 
in large, complex systems where components can make 
transitions in parallel. During the past couple of years a 
considerable progress has been made using the following 
approaches: symbolic algorithms with Binary Decision 
Diagrams (BDD), partial order reduction and abstraction. 
In [3] the importance of the early design decisions concerning 
the granularity of components was shown. In [4] a method was 
given to reduce the state space by using many similar 
components. In [5] the role of constraints is put into focus to 
preserve specific properties when a base system is extended 
with one or more components. These constraints are similar to 
the contracts introduced by Bertrand Meyer [6], [7]. 
In the following sections the sample system of an 
oversimplified airport is given, modified and analyzed with the 
NuSMV model checker. SMV (Symbolic Model Verifier) is a 
tool for checking that finite-state systems meet the 
specifications given in Computation Tree Logic (CTL). 
NuSMV is originated from reengineering, reimplementing and 
extending the code of SMV. The new tool is robust and close to 
industrial systems standards, making it suitable for modeling 
life-like systems. The analysis of specifications expressed in 

Linear Temporal Logic (LTL) is also possible in this version. In 
NuSMV the specification of the system – usually a state 
transition machine (STM) – and the constraints imposed on its 
functioning expressed by CTL formulas are present together. 
In Section 2 the sample system of an oversimplified airport is 
briefly outlined. In Section 2.1 the specification and a model of 
the airport are given. In 2.2 a separately developed and checked 
(faulty) airplane component is analyzed whether it can 
interoperate with the existing airport system. In Section 2.3 an 
extension of the airport is described and the OIMC algorithm is 
shown to make an impact on the model checking process. 
Section 3 presents some concluding remarks focusing on the 
open questions to be solved. 
 

2. A SAMPLE SYSTEM: AN AIRPORT 
 

A small airport is given with one control tower and a number of 
airplanes leaving and arriving. An aircraft is on the ground, 
taking off, flying or landing. The tower and the airplanes are 
communicating with one another via messages (the airplanes are 
requesting takeoffs and landings, while the tower is issuing the 
relevant permits). In the following sections an oversimplified 
version of the airport with one control tower and two airplanes 
is modeled and analyzed. On this high level of abstraction the 
tower is symbolized with a Boolean variable tower, and all the 
communication between the tower and the airplanes is reduced 
to setting and querying the value of this variable. 
 
The basic version 
In the following example the airport system consists of two 
components (implemented as modules in NuSMV), see Figure 1 
for a simplified state diagram of the system. There are two 
airplanes – entities of the class plane – explicitly present while 
the tower is represented by a Boolean variable tower. Each 
airplane is parameterized with the value of tower replacing the 
entire process of communication with querying and setting the 
actual value of this variable. The specification is represented by 
CTL formulas. 
 



 
  
Figure 1: Simplified state diagram of the airport sample system 
 
In the global specification of the airport the formula SPEC 

AG(tower = 0 | tower = 1) should guarantee that the value of 
tower is always 0 or 1. It is quite obvious in this case but in real 
life situations there might be an occurring distortion of 
information leading to a possible breakdown of the air traffic 
control. An example will be given in Section 2.2. 
Formula SPEC AG(tower=1 -> !(plane1.state=taking_off | 

plane1.state=landing | plane2.state=taking_off | 

plane2.state=landing)) and formula SPEC AG(tower=0 -> 

(plane1.state=taking_off xor plane1.state=landing xor 

plane2.state=taking_off xor plane2.state=landing)) ensure there 
are no misunderstood messages during the synchronization of 
the airplanes so that only one of them can be on the runway of 
the airport either taking off or landing (in this case when tower 

= 0). 
In the module specification of the airplane the fairness 
constraints are meant to ignore all those sequences where the 
tower does not guarantee that each eligible airplane will 
eventually be chosen for running [1]. This means that a fairness 
constraint restricts the attention only to fair execution paths. The 
model checker does not consider path quantifiers not applying 
to fair paths when there are evaluating specifications. We note 
that NuSMV supports two types of fairness constraints, namely 
justice constraints and compassion constraints. A justice 
constraint consists of a formula f which is assumed to be true 
infinitely often in all the fair paths. A compassion constraint 
consists of a pair of formulas (p, q); if property p is true 
infinitely often in a fair path, then also formula q has to be true 
infinitely often in the fair path. 
Formula SPEC AG !(state = on_ground & state = flying) within 
the module airplane ensures that a nonsense such as a plane in 
the air and on the ground at the same time is not possible. 
Formula SPEC AG (state = flying -> AF (state = landing)) 
should check that all planes having taken off will eventually 
land. 
The following global specification formulas are situated within 
the module airplane for simply technical reasons. Otherwise, 
there should be as many of them as the number of airplanes in 
the system. 
Formula SPEC AG((state = req_takeoff & tower = 1) -> 

AF(state = taking_off)) guarantees that any plane requesting a 
takeoff will eventually get the permission if the runway is not 
used by another plane (when tower = 1). 
 
-- specification AG !(state = on_ground & state = flying) IN 

plane1 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane1 is true 

-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane1 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane1 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane1 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane1 is true 

-- specification AG !(state = on_ground & state = flying) IN 

plane2 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane2 is true 

-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane2 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane2 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane2 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane2 is true 

-- specification AG (tower = 0 xor tower = 1)  is true 

-- specification AG (tower = 1 -> !(((plane1.state = taking_off | 

plane1.state = landing) | plane2.state = taking_off) | 

plane2.state = landing))  is true 

-- specification AG (tower = 0 -> (((plane1.state = taking_off 

xor plane1.state = landing) xor plane2.state = taking_off) xor 

plane2.state = landing))  is true 
 
Figure 2: Screenshot of the successful completion of model 
checking 
 
Formula SPEC AG((state = req_takeoff & tower = 0) -> 

AX(!(state = taking_off))) ensures that none of the airplanes can 
take off in the next moment if the runway is currently in use. 
The description of the two formulas concerning landing can be 
given analogously. 
The result of the model checking for this specific case of one 
tower and two airplanes can be seen in Figure 2. The total 
number of allocated BDD nodes in this case: 4,242. The 
example above could also be specified by using LTL formulas. 
For more flexibility, the extension of LTL with past temporal 
operators may be used to express certain properties of the 
airport (e.g. checking whether the doors are locked before 
takeoff or the wheels are out before landing). 
 
A (faulty) variant of the airplane 
Let us take a look at the following variant of the airport system. 
The occupation of the runway can be interpreted in different 
ways. For example, the opposite meaning can be associated 
with the truth values of tower. It can be easily seen that this 
requires only a slight modification of the module airplane from 
the previous example described in Section 2.1. The necessary 
modifications within the model of the airplane can be seen in 
Figure 3. 
 
… 

init(tower) := 0; 

… 



next(tower) := 

case 

(state = req_takeoff) | (state = req_land) : 1; 

(state = taking_off) | (state = landing) : 0; 

1 : tower; 

esac; 

… 

 
Figure 3: Necessary changes to the model of the airplane 
 
The global specification formulas situated in the module 
airplane can be left out as we might consider a COTS 
(Component Off-the-Shelf) component with no knowledge of 
the outside world. The total number of allocated nodes in this 
case is 367. The screenshot of a successful execution of 
checking the model of this component can be seen in Figure 4. 
 
-- specification AG !(state = on_ground & state = flying) IN 

plane1 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane1 is true 

 
Figure 4: Model checking results of a single airplane component 
 
A system that consists of airplanes of this type communicating 
with a tower using opposite meaning messages compared to the 
one in the previous example is also functioning properly as it 
can be proved by using NuSMV, however it is not detailed here 
for lack of space. 
Let us now consider a situation in which the airport described in 
Section 2.1 is extended with a new airplane of this latter type. 
The necessary modifications to the specification can bee seen in 
Figure 5. 
 
SPEC AG(tower = 0 | tower = 1) 

SPEC AG(tower=1 -> !(plane1.state=taking_off | 

plane1.state=landing |plane2.state=taking_off | 

plane2.state=landing | plane3.state=taking_off | 

plane3.state=landing)) 

SPEC AG(tower=0 -> (plane1.state=taking_off xor 

plane1.state=landing xor plane2.state=taking_off xor 

plane2.state=landing xor plane3.state=taking_off xor 

plane3.state=landing)) 

 
Figure 5: Necessary modifications for the verification of the 
extended system 
 
The first formula is not violated because even with opposite 
meaning values the interval is still the same. The second and 
third formulas are violated, and this fact is shown by 
counterexamples generated with the execution of a standard 
model checking process. 
However, for educational purposes it would be interesting to see 
how important it is to properly define the sufficient conditions 
for a minimally safe system. So what happens if the second and 
third formulas are “forgotten” and left out of the global 
specification accidentally? The third (faulty) airplane will 
misinterpret the messages of the tower. In case tower = 1, it will 
wait either on the ground or in the air though the runway is 
actually empty. In case tower = 0, it will not be aware that 
another plane is using the runway and this mix-up will result in 
a possible crash. The following screenshot in Figure 6 illustrates 
that the model checking process will still be successful, though 
the system is not trustable. This situation is dangerous and 
unacceptable. 

 
-- specification AG !(state = on_ground & state = flying) IN 

plane1 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane1 is true 

-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane1 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane1 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane1 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane1 is true 

-- specification AG !(state = on_ground & state = flying) IN 

plane2 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane2 is true 

-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane2 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane2 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane2 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane2 is true 

-- specification AG !(state = on_ground & state = flying) IN 

plane3 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane3 is true 

-- specification AG (tower = 0 xor tower = 1)  is true 

 
Figure 6: A faulty system not recognized by model checking 
because of the insufficient global specification 
 
This phenomenon sheds light on some of the problems of 
modeling a system as an insufficient specification or the use of 
bad formulas may lead to unsafe systems undermining the main 
advantage of formal methods, namely the guarantee that there 
are no hidden errors left in the model and in the code. 
 
A correct solution improved with OIMC 
Now let us consider a situation in which the airport described in 
Section 2.1 is extended with an airplane originating from the 
very same class plane. This new third plane does not contain the 
global specification formulas within the module as opposed to 
the existing aircrafts. After checking the model of this extended 
system we get the following results shown in Figure 7. 
 
-- specification AG !(state = on_ground & state = flying) IN 

plane1 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane1 is true 

-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane1 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane1 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane1 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane1 is true 

-- specification AG !(state = on_ground & state = flying) IN 

plane2 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane2 is true 



-- specification AG ((state = req_takeoff & tower = 1) -> AF 

state = taking_off) IN plane2 is true 

-- specification AG ((state = req_takeoff & tower = 0) -> AX 

!(state = taking_off)) IN plane2 is true 

-- specification AG ((state = req_land & tower = 1) -> AF state 

= landing) IN plane2 is true 

-- specification AG ((state = req_land & tower = 0) -> AX 

!(state = landing)) IN plane2 is true 

-- specification AG !(state = on_ground & state = flying) IN 

plane3 is true 

-- specification AG (state = flying -> AF state = landing) IN 

plane3 is true 

-- specification AG (tower = 0 xor tower = 1)  is true 

-- specification AG (tower = 1 -> !(((((plane1.state = taking_off 

| plane1.state = landing) | plane2.state = taking_off) | 

plane2.state = landing) | plane3.state = taking_off) | 

plane3.state = landing))  is true 

-- specification AG (tower = 0 -> (((((plane1.state = taking_off 

xor plane1.state = landing) xor plane2.state = taking_off) xor 

plane2.state = landing) xor plane3.state = taking_off) xor 

plane3.state = landing))  is true 

 
Figure 7: Result screen of NuSMV showing that the extended 
system preserves the desired properties 
 
The total number of allocated nodes is 21,075 in case there are 
three airplanes controlled by the tower. This is significantly 
greater than the number of nodes in the case of two airplanes. 
The scalability of extending the system with more airplanes can 
be easily guaranteed by forcing the same structure in the 
subformulas as it can be seen in Figure 8. 
 
SPEC AG(tower=1 -> !(plane1.state=taking_off | 

plane1.state=landing | plane2.state=taking_off | 

plane2.state=landing | plane3.state=taking_off | 

plane3.state=landing)) 

SPEC AG(tower=0 -> (plane1.state=taking_off xor 

plane1.state=landing xor plane2.state=taking_off xor 

plane2.state=landing xor plane3.state=taking_off xor 

plane3.state=landing)) 
 
Figure 8: Same structure in the subformulas providing 
scalability 
 
Introducing new airplanes requires a small number of changes 
in the global specification. These changes are based on the same 
structure, so it may be done mechanically by the model checker 
in the future (not yet supported by NuSMV). 
The need to reduce the number of states and the recognition of 
similarity between the components of a system led to a method 
exploiting the similarities between modules, described in [4]. 
Unfortunately, the notion of similarity was too restrictive, so a 
more general solution had to be found. 
This way the relatively new approach of OIMC has become the 
center of attention. The entire theoretical background and the 
algorithm are beyond the scope of this paper, but an overview 
can be found in [8]. In the following paragraphs the informal 
algorithm of OIMC is described exclusively. 
In the beginning a property p (in the form of a CTL formula) is 
assumed to hold in the base component B. Then the extension 
component E must be checked whether it violates p. By using 
the incremental model checking algorithm it is sufficient to 
know whether all the respective pairs of the exit points of B and 
E preserve the property p. At the end of the execution of the 
algorithm components B and E consistently preserve the desired 

property if the truth values of their closures for the property p 
are the same. There is no need to recheck the entire model of the 
extended system in addition to the actual verification of the base 
and the extension. 
The closures for the global specification formulas in the base 
component (one tower and two planes) are the sets of 
subformulas seen in Figure 9. 
 
ClB1=(AG(tower = 0 | tower = 1); (tower = 0 | tower = 1); 

tower=0; tower=1) 

ClB2=(AG(tower=1 -> !(plane1.state=taking_off | 

plane1.state=landing | plane2.state=taking_off | 

plane2.state=landing)); tower=1; 

plane1.state=taking_off; plane1.state=landing; 

plane2.state=taking_off; plane2.state=landing) 

ClB3=(AG(tower=0 -> (plane1.state=taking_off xor 

plane1.state=landing xor plane2.state=taking_off xor 

plane2.state=landing)); tower=0; 

plane1.state=taking_off; plane1.state=landing; 

plane2.state=taking_off; plane2.state=landing) 

 
Figure 9: The closure of the global specification formulas of the 
base component 
 
It is quite obvious that in the case of a faulty airplane ClB1 = 
ClE1 as the new module will use the same values of 0 and 1, 
meaning that interoperation between the base and the extension 
is possible. However, the respective pairs of ClB2, ClE2 and ClB3, 
ClE3 will not be equal since the highlighted atomic formulas will 
have their negated counterparts in their respective pairs. 
On the other hand, by extending the airport with an aircraft of 
the original class plane will result in the same closures for the 
properties above at the exit points in the extension, making it 
possible for them to interoperate with each other. 
The cost of this type of model checking will be significantly 
lower than the standard process as the number of allocated 
nodes in this case is approximately 4,242 for the base and 367 
for the extension, resulting in a roughly 78% reduction in the 
state space. But the cost of determining the exit points, then 
generating and comparing the respective closures of the base 
and the extension should also be calculated with some 
measurement techniques. 
The real situation is quite ambiguous as the results of the OIMC 
algorithm are promising, but the algorithm has not been 
implemented yet so the entire process needs to be done 
manually. In practice, it is currently no match for standard 
model checking techniques. 
From an educational point of view it could be a cornerstone in 
shifting the attention of students from coding to the incremental 
architecture of systems by using components. 
 

3. CONCLUSIONS 
 

OIMC is a relatively new approach emphasizing the changes to 
a system rather than model checking the entire system. OIMC 
was brought to life by the need to reduce the state space 
significantly in order to make this new generation of model 
checking techniques applicable in large and complex real life 
applications. 
Currently there are three major problems with the usage of the 
OIMC algorithm. First, it is not able to handle circular 
dependency between the interface states of the base and the 
extension. Secondly, it supports only the CTL temporal logic 
language. 



Thirdly, to our best knowledge, the algorithm has not been 
implemented in an open-source, close-to-standards model 
checking tool yet. We are addressing the first problem with a 
greatest fixed point approach. A possible solution to the second 
problem is currently underway, the algorithm is modified by 
introducing new rules to handle LTL formulas and also Past 
Tense operators. We are also working on the third problem as 
we firmly believe these results can help in the formal 
verification of larger and more complex software systems, not 
only from a practical but also from an educational aspect. 
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