
Educational Aspects of Incremental Model Checking

Ákos DÁVID
Faculty of Information Technology, University of Pannonia

Veszprém, H-8200, Hungary

and

László KOZMA
Department of Software Technology and Methodology

Eötvös Loránd University
Budapest, H-1117, Hungary

ABSTRACT

Model checking has undoubtedly emerged as one of the most
effective formal methods for verifying finite, concurrent
systems automatically. The most significant problem of model
checking is the state space explosion problem occurring in
large, complex systems where components can make transitions
in parallel. Consequently, extending an existing system with one
or more components can lead to an exponential increase in the
state space, causing serious problems for model checking tools.
The approach of Open Incremental Model Checking (OIMC) is
trying to compensate these difficulties by focusing exclusively
on the changes of a system instead of rechecking the entire
extended system including both the original and the new
components. In this paper we study the practical and
educational aspects of this new method strongly emphasizing
the role of granularity and scalability, meanwhile intending to
show also its efficiency. A sample system is used to illustrate
the scalability of the extension of a given system.

Keywords: component, model, verification, model checking

1. INTRODUCTION

Model checking has undoubtedly emerged as one of the most
effective formal methods for verifying finite, concurrent
systems automatically [2]. The most significant problem of
model checking is the state space explosion problem occurring
in large, complex systems where components can make
transitions in parallel. During the past couple of years a
considerable progress has been made using the following
approaches: symbolic algorithms with Binary Decision
Diagrams (BDD), partial order reduction and abstraction.
In [3] the importance of the early design decisions concerning
the granularity of components was shown. In [4] a method was
given to reduce the state space by using many similar
components. In [5] the role of constraints is put into focus to
preserve specific properties when a base system is extended
with one or more components. These constraints are similar to
the contracts introduced by Bertrand Meyer [6], [7].
In the following sections the sample system of an
oversimplified airport is given, modified and analyzed with the
NuSMV model checker. SMV (Symbolic Model Verifier) is a
tool for checking that finite-state systems meet the
specifications given in Computation Tree Logic (CTL).
NuSMV is originated from reengineering, reimplementing and
extending the code of SMV. The new tool is robust and close to
industrial systems standards, making it suitable for modeling
life-like systems. The analysis of specifications expressed in

Linear Temporal Logic (LTL) is also possible in this version. In
NuSMV the specification of the system – usually a state
transition machine (STM) – and the constraints imposed on its
functioning expressed by CTL formulas are present together.
In Section 2 the sample system of an oversimplified airport is
briefly outlined. In Section 2.1 the specification and a model of
the airport are given. In 2.2 a separately developed and checked
(faulty) airplane component is analyzed whether it can
interoperate with the existing airport system. In Section 2.3 an
extension of the airport is described and the OIMC algorithm is
shown to make an impact on the model checking process.
Section 3 presents some concluding remarks focusing on the
open questions to be solved.

2. A SAMPLE SYSTEM: AN AIRPORT

A small airport is given with one control tower and a number of
airplanes leaving and arriving. An aircraft is on the ground,
taking off, flying or landing. The tower and the airplanes are
communicating with one another via messages (the airplanes are
requesting takeoffs and landings, while the tower is issuing the
relevant permits). In the following sections an oversimplified
version of the airport with one control tower and two airplanes
is modeled and analyzed. On this high level of abstraction the
tower is symbolized with a Boolean variable tower, and all the
communication between the tower and the airplanes is reduced
to setting and querying the value of this variable.

The basic version
In the following example the airport system consists of two
components (implemented as modules in NuSMV), see Figure 1
for a simplified state diagram of the system. There are two
airplanes – entities of the class plane – explicitly present while
the tower is represented by a Boolean variable tower. Each
airplane is parameterized with the value of tower replacing the
entire process of communication with querying and setting the
actual value of this variable. The specification is represented by
CTL formulas.

Figure 1: Simplified state diagram of the airport sample system

In the global specification of the airport the formula SPEC

AG(tower = 0 | tower = 1) should guarantee that the value of
tower is always 0 or 1. It is quite obvious in this case but in real
life situations there might be an occurring distortion of
information leading to a possible breakdown of the air traffic
control. An example will be given in Section 2.2.
Formula SPEC AG(tower=1 -> !(plane1.state=taking_off |

plane1.state=landing | plane2.state=taking_off |

plane2.state=landing)) and formula SPEC AG(tower=0 ->

(plane1.state=taking_off xor plane1.state=landing xor

plane2.state=taking_off xor plane2.state=landing)) ensure there
are no misunderstood messages during the synchronization of
the airplanes so that only one of them can be on the runway of
the airport either taking off or landing (in this case when tower

= 0).
In the module specification of the airplane the fairness
constraints are meant to ignore all those sequences where the
tower does not guarantee that each eligible airplane will
eventually be chosen for running [1]. This means that a fairness
constraint restricts the attention only to fair execution paths. The
model checker does not consider path quantifiers not applying
to fair paths when there are evaluating specifications. We note
that NuSMV supports two types of fairness constraints, namely
justice constraints and compassion constraints. A justice
constraint consists of a formula f which is assumed to be true
infinitely often in all the fair paths. A compassion constraint
consists of a pair of formulas (p, q); if property p is true
infinitely often in a fair path, then also formula q has to be true
infinitely often in the fair path.
Formula SPEC AG !(state = on_ground & state = flying) within
the module airplane ensures that a nonsense such as a plane in
the air and on the ground at the same time is not possible.
Formula SPEC AG (state = flying -> AF (state = landing))
should check that all planes having taken off will eventually
land.
The following global specification formulas are situated within
the module airplane for simply technical reasons. Otherwise,
there should be as many of them as the number of airplanes in
the system.
Formula SPEC AG((state = req_takeoff & tower = 1) ->

AF(state = taking_off)) guarantees that any plane requesting a
takeoff will eventually get the permission if the runway is not
used by another plane (when tower = 1).

-- specification AG !(state = on_ground & state = flying) IN

plane1 is true

-- specification AG (state = flying -> AF state = landing) IN

plane1 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane1 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane1 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane1 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane1 is true

-- specification AG !(state = on_ground & state = flying) IN

plane2 is true

-- specification AG (state = flying -> AF state = landing) IN

plane2 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane2 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane2 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane2 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane2 is true

-- specification AG (tower = 0 xor tower = 1) is true

-- specification AG (tower = 1 -> !(((plane1.state = taking_off |

plane1.state = landing) | plane2.state = taking_off) |

plane2.state = landing)) is true

-- specification AG (tower = 0 -> (((plane1.state = taking_off

xor plane1.state = landing) xor plane2.state = taking_off) xor

plane2.state = landing)) is true

Figure 2: Screenshot of the successful completion of model
checking

Formula SPEC AG((state = req_takeoff & tower = 0) ->

AX(!(state = taking_off))) ensures that none of the airplanes can
take off in the next moment if the runway is currently in use.
The description of the two formulas concerning landing can be
given analogously.
The result of the model checking for this specific case of one
tower and two airplanes can be seen in Figure 2. The total
number of allocated BDD nodes in this case: 4,242. The
example above could also be specified by using LTL formulas.
For more flexibility, the extension of LTL with past temporal
operators may be used to express certain properties of the
airport (e.g. checking whether the doors are locked before
takeoff or the wheels are out before landing).

A (faulty) variant of the airplane
Let us take a look at the following variant of the airport system.
The occupation of the runway can be interpreted in different
ways. For example, the opposite meaning can be associated
with the truth values of tower. It can be easily seen that this
requires only a slight modification of the module airplane from
the previous example described in Section 2.1. The necessary
modifications within the model of the airplane can be seen in
Figure 3.

…

init(tower) := 0;

…

next(tower) :=

case

(state = req_takeoff) | (state = req_land) : 1;

(state = taking_off) | (state = landing) : 0;

1 : tower;

esac;

…

Figure 3: Necessary changes to the model of the airplane

The global specification formulas situated in the module
airplane can be left out as we might consider a COTS
(Component Off-the-Shelf) component with no knowledge of
the outside world. The total number of allocated nodes in this
case is 367. The screenshot of a successful execution of
checking the model of this component can be seen in Figure 4.

-- specification AG !(state = on_ground & state = flying) IN

plane1 is true

-- specification AG (state = flying -> AF state = landing) IN

plane1 is true

Figure 4: Model checking results of a single airplane component

A system that consists of airplanes of this type communicating
with a tower using opposite meaning messages compared to the
one in the previous example is also functioning properly as it
can be proved by using NuSMV, however it is not detailed here
for lack of space.
Let us now consider a situation in which the airport described in
Section 2.1 is extended with a new airplane of this latter type.
The necessary modifications to the specification can bee seen in
Figure 5.

SPEC AG(tower = 0 | tower = 1)

SPEC AG(tower=1 -> !(plane1.state=taking_off |

plane1.state=landing |plane2.state=taking_off |

plane2.state=landing | plane3.state=taking_off |

plane3.state=landing))

SPEC AG(tower=0 -> (plane1.state=taking_off xor

plane1.state=landing xor plane2.state=taking_off xor

plane2.state=landing xor plane3.state=taking_off xor

plane3.state=landing))

Figure 5: Necessary modifications for the verification of the
extended system

The first formula is not violated because even with opposite
meaning values the interval is still the same. The second and
third formulas are violated, and this fact is shown by
counterexamples generated with the execution of a standard
model checking process.
However, for educational purposes it would be interesting to see
how important it is to properly define the sufficient conditions
for a minimally safe system. So what happens if the second and
third formulas are “forgotten” and left out of the global
specification accidentally? The third (faulty) airplane will
misinterpret the messages of the tower. In case tower = 1, it will
wait either on the ground or in the air though the runway is
actually empty. In case tower = 0, it will not be aware that
another plane is using the runway and this mix-up will result in
a possible crash. The following screenshot in Figure 6 illustrates
that the model checking process will still be successful, though
the system is not trustable. This situation is dangerous and
unacceptable.

-- specification AG !(state = on_ground & state = flying) IN

plane1 is true

-- specification AG (state = flying -> AF state = landing) IN

plane1 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane1 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane1 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane1 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane1 is true

-- specification AG !(state = on_ground & state = flying) IN

plane2 is true

-- specification AG (state = flying -> AF state = landing) IN

plane2 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane2 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane2 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane2 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane2 is true

-- specification AG !(state = on_ground & state = flying) IN

plane3 is true

-- specification AG (state = flying -> AF state = landing) IN

plane3 is true

-- specification AG (tower = 0 xor tower = 1) is true

Figure 6: A faulty system not recognized by model checking
because of the insufficient global specification

This phenomenon sheds light on some of the problems of
modeling a system as an insufficient specification or the use of
bad formulas may lead to unsafe systems undermining the main
advantage of formal methods, namely the guarantee that there
are no hidden errors left in the model and in the code.

A correct solution improved with OIMC
Now let us consider a situation in which the airport described in
Section 2.1 is extended with an airplane originating from the
very same class plane. This new third plane does not contain the
global specification formulas within the module as opposed to
the existing aircrafts. After checking the model of this extended
system we get the following results shown in Figure 7.

-- specification AG !(state = on_ground & state = flying) IN

plane1 is true

-- specification AG (state = flying -> AF state = landing) IN

plane1 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane1 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane1 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane1 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane1 is true

-- specification AG !(state = on_ground & state = flying) IN

plane2 is true

-- specification AG (state = flying -> AF state = landing) IN

plane2 is true

-- specification AG ((state = req_takeoff & tower = 1) -> AF

state = taking_off) IN plane2 is true

-- specification AG ((state = req_takeoff & tower = 0) -> AX

!(state = taking_off)) IN plane2 is true

-- specification AG ((state = req_land & tower = 1) -> AF state

= landing) IN plane2 is true

-- specification AG ((state = req_land & tower = 0) -> AX

!(state = landing)) IN plane2 is true

-- specification AG !(state = on_ground & state = flying) IN

plane3 is true

-- specification AG (state = flying -> AF state = landing) IN

plane3 is true

-- specification AG (tower = 0 xor tower = 1) is true

-- specification AG (tower = 1 -> !(((((plane1.state = taking_off

| plane1.state = landing) | plane2.state = taking_off) |

plane2.state = landing) | plane3.state = taking_off) |

plane3.state = landing)) is true

-- specification AG (tower = 0 -> (((((plane1.state = taking_off

xor plane1.state = landing) xor plane2.state = taking_off) xor

plane2.state = landing) xor plane3.state = taking_off) xor

plane3.state = landing)) is true

Figure 7: Result screen of NuSMV showing that the extended
system preserves the desired properties

The total number of allocated nodes is 21,075 in case there are
three airplanes controlled by the tower. This is significantly
greater than the number of nodes in the case of two airplanes.
The scalability of extending the system with more airplanes can
be easily guaranteed by forcing the same structure in the
subformulas as it can be seen in Figure 8.

SPEC AG(tower=1 -> !(plane1.state=taking_off |

plane1.state=landing | plane2.state=taking_off |

plane2.state=landing | plane3.state=taking_off |

plane3.state=landing))

SPEC AG(tower=0 -> (plane1.state=taking_off xor

plane1.state=landing xor plane2.state=taking_off xor

plane2.state=landing xor plane3.state=taking_off xor

plane3.state=landing))

Figure 8: Same structure in the subformulas providing
scalability

Introducing new airplanes requires a small number of changes
in the global specification. These changes are based on the same
structure, so it may be done mechanically by the model checker
in the future (not yet supported by NuSMV).
The need to reduce the number of states and the recognition of
similarity between the components of a system led to a method
exploiting the similarities between modules, described in [4].
Unfortunately, the notion of similarity was too restrictive, so a
more general solution had to be found.
This way the relatively new approach of OIMC has become the
center of attention. The entire theoretical background and the
algorithm are beyond the scope of this paper, but an overview
can be found in [8]. In the following paragraphs the informal
algorithm of OIMC is described exclusively.
In the beginning a property p (in the form of a CTL formula) is
assumed to hold in the base component B. Then the extension
component E must be checked whether it violates p. By using
the incremental model checking algorithm it is sufficient to
know whether all the respective pairs of the exit points of B and
E preserve the property p. At the end of the execution of the
algorithm components B and E consistently preserve the desired

property if the truth values of their closures for the property p
are the same. There is no need to recheck the entire model of the
extended system in addition to the actual verification of the base
and the extension.
The closures for the global specification formulas in the base
component (one tower and two planes) are the sets of
subformulas seen in Figure 9.

ClB1=(AG(tower = 0 | tower = 1); (tower = 0 | tower = 1);

tower=0; tower=1)

ClB2=(AG(tower=1 -> !(plane1.state=taking_off |

plane1.state=landing | plane2.state=taking_off |

plane2.state=landing)); tower=1;

plane1.state=taking_off; plane1.state=landing;

plane2.state=taking_off; plane2.state=landing)

ClB3=(AG(tower=0 -> (plane1.state=taking_off xor

plane1.state=landing xor plane2.state=taking_off xor

plane2.state=landing)); tower=0;

plane1.state=taking_off; plane1.state=landing;

plane2.state=taking_off; plane2.state=landing)

Figure 9: The closure of the global specification formulas of the
base component

It is quite obvious that in the case of a faulty airplane ClB1 =
ClE1 as the new module will use the same values of 0 and 1,
meaning that interoperation between the base and the extension
is possible. However, the respective pairs of ClB2, ClE2 and ClB3,
ClE3 will not be equal since the highlighted atomic formulas will
have their negated counterparts in their respective pairs.
On the other hand, by extending the airport with an aircraft of
the original class plane will result in the same closures for the
properties above at the exit points in the extension, making it
possible for them to interoperate with each other.
The cost of this type of model checking will be significantly
lower than the standard process as the number of allocated
nodes in this case is approximately 4,242 for the base and 367
for the extension, resulting in a roughly 78% reduction in the
state space. But the cost of determining the exit points, then
generating and comparing the respective closures of the base
and the extension should also be calculated with some
measurement techniques.
The real situation is quite ambiguous as the results of the OIMC
algorithm are promising, but the algorithm has not been
implemented yet so the entire process needs to be done
manually. In practice, it is currently no match for standard
model checking techniques.
From an educational point of view it could be a cornerstone in
shifting the attention of students from coding to the incremental
architecture of systems by using components.

3. CONCLUSIONS

OIMC is a relatively new approach emphasizing the changes to
a system rather than model checking the entire system. OIMC
was brought to life by the need to reduce the state space
significantly in order to make this new generation of model
checking techniques applicable in large and complex real life
applications.
Currently there are three major problems with the usage of the
OIMC algorithm. First, it is not able to handle circular
dependency between the interface states of the base and the
extension. Secondly, it supports only the CTL temporal logic
language.

Thirdly, to our best knowledge, the algorithm has not been
implemented in an open-source, close-to-standards model
checking tool yet. We are addressing the first problem with a
greatest fixed point approach. A possible solution to the second
problem is currently underway, the algorithm is modified by
introducing new rules to handle LTL formulas and also Past
Tense operators. We are also working on the third problem as
we firmly believe these results can help in the formal
verification of larger and more complex software systems, not
only from a practical but also from an educational aspect.

4. REFERENCES

[1] Cavada, R., Cimatti, A., Olivetti, E., Keighren, G., Pistore,
M., Roveri, M., Semprini, S., Tchaltsev, A.: NuSMV 2.3
User Manual, Retrieved on 06/06/07 from
http://nusmv.irst.itc.it/NuSMV/userman/v23/nusmv.pdf

[2] Clarke, E., Grumberg, O., Peled, D.: Model Checking, MIT
Press, 2000.

[3] Dávid, Á., Kozma, L., Pozsgai, T.: On the granularity of
components, Proceedings of the 7th International
Conference on Applied Informatics, Eger, Hungary, January
28-31, 2007, Vol. 2, pp. 219-228.

[4] Dávid, Á., Kozma, L., Pozsgai, T.: “On the model
checking of a system consisting of many similar
components”, Annales Univ. Sci. Budapest., Sect. Comp.
28, pp. 183-195, 2008.

[5] Dávid, Á., Pozsgai, T., Kozma, L.: “Extending a system
with verified components” presented at CSCS’06, June
27-30, 2006, Szeged, Hungary (full paper accepted for
publication by Polytechnica Periodica)

[6] Gross, H. G.: Component-Based Software Testing with
UML, Springer, 2005.

[7] Meyer, B.: Object-Oriented Software Construction
Second Edition, Prentice Hall, 1997.

