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Abstract

The Variational Monte Carlo method is used to evaluate the energy of the ground state of the helium
atom. Tria wave functions depending on the variational parameters are constructed for this purpose.
Energies as well as standard deviations are plotted versus the variationa parameters. The experimental

data are presented for comparison.

1. Introduction

The term Monte Carlo refers to group
of methods in which physical or
mathematical problems are simulated
by using random numbers. Quantum
Monte Carlo (QMC) techniques
provide a practical method for solving
the many-body Schrddinger equation.

It is commonly used in physics to
simulate complex systems that are of
random nature in statistical physics[1].
There are many versions of the QMC
methods which are used to solve the
Schrodinger equation for the ground
state energy of a quantum particle.
Among them are the diffusion Monte
Carlo method [2], which is used to
solve the time-dependent Schrodinger
equation. Another method is the fixed-
phase Monte Carlo method [3] which
is used for wave equations that
consider a magnetic field.

The simplest of QMC methods is the
variational Monte Carlo (VMC)
technigue which has become a
powerful tool in Quantum Chemistry
calculations [4]. It is based on
evaluating a high-dimensional integral
by sampling the integrand using a set
of randomly generated points. It can
be shown that the integral converges
faster by using VMC technique than
more conventional techniques based

on sampling the integrand on a regular
grid for problems involving more than
a few dimensions. Moreover, the
statistical error in the estimate of the
integral decreases and the square root
of the number of points is sampled,
irrespective of the dimensionality of
the problem. The major advantage of
this method is the possibility to freely
choose the analytical form of the trial
wave function which may contain
highly sophisticated term, in such a
way that electron correlation is
explicitly taken into account. Thisisan
important valid feature for QMC
methods, which are therefore
extremely useful to sudy physical
cases where the electron correlation
plays acrucial role.

2. Variationa Monte Carlo
Calculations

The Variational Mont Carlo method [5]
is based on a combination of two ideas
namely the variational principal and
Monte Carlo evaluation of integrals
using importance sampling based on
the Metropolis algorithm. It is used to
compute quantum expectation values
of an operator. In particular, if the
operator is the Hamiltonian, its
expectation value is the varitional
energy Evma,
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where, Y is atrial wave function and

R is the 3N dimensional vector of
electron coordinates. According to the
Varitional principal, the expectation
value of the Hamiltonian is an upper
bound on the exact ground state energy
E, .thatis, E, ® E,.

To evaluate the integral in Eg. (2.1)
we construct first atrial wave function
P&(R) depending on variational
parameters a = (a,,8,,..ccc.e.- ,a, ) and

then varies the parameters to obtain the
minimum energy.
Variational Monte Carlo

(2.1)

C

calculations determine E,. by
writing it as
Eye = (P(R)E, (R)IR, (22
Y. (R)
where P(R):%
QY- (R)| drR

is positive everywhere and interpreted
as a probability distribution and
E, :M is the local energy
Y+ (R)

function. The value of (E ) is
evaluated using a series of points, R,
proportional to P(R). At each of these
" |:iYT(IQ)

" Y:(R)
is evaluated. After a sufficient number
of evaluations the VMC estimate of
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(2.3)
where M is the ensemble size of
random numbers
{RLRy i) Ry}and N is the
number of ensembles. These

ensembles so generated must reflect

the distribution function itself. A given
ensemble is chosen according to the
Metropolis algorithm [6]. This method
uses an acceptance and rejection
process of random numbers that have a
frequency probability distribution like
Y? . The acceptance and rejection
method is due to the work of von
Neuman [7] and is performed by
obtaining a random number from the
probability distribution, P(R) , then
testing its value to determine if it will
be acceptable for use in approximation
of the local energy. Random numbers
may be generated using a variety of
methods [8,9]. Finally, it is important
to calculate the standard deviation of
the energy,

.. J<EV2MC>- (Ewe)’

M (N - 1)

3. The Statement of the Problem

For nucleus with charge Z and infinite
mass the non-relativistic Hamiltonian
in atomic units (a. u) reads [10]:

2 - h2 -
H=T+Vv=-—N?--—NZ+V
2m 2m
3.1

where r, and r, denote the relative
coordinates of the two electrons with
respect to the nucleus. The potential V
is defined as
2 2 2
V =- Zi - ze +e_’
r1 r2 r12
I :|r1 - r2|
In Hylleraas coordinates the above
Hamiltonian can be written as:
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where f,,f, and f,, denotes the unit

vectors of the corresponding distance.
In writing Eg. (3.1) we have taken into
account the Coulomb interactions
between the particles, but have
neglected small corrections arising
from spin-orbit and  spin-spin
interactions.

The electronic eigenvalue is
determined from the Schrodinger
equation:

HY (r.,r,) =EY (r,,r,) (3.2
where, y (r,,r,)is the electronic wave

function. Our goal, now, isto solve the
six-dimensional  partial  differential
eigenvalues Eg. (3.2) for the lowest
eigenvalue.

4. The Trial Wave Function

The choice of trial wave function is
critical in VMC calculations. How to
choose it is however a highly non-
trivial task. All observables are
evaluated with respect to the
probability distribution

oy VTR
(R)_ 2
QY- (R) dR

generated by the trial wave function.
The trial wave function must
approximate an exact eigen state in
order that accurate results are to be
obtained. Improved trial wave function
also improve the importance sampling,
reducing the cost of obtaining a certain
statistical accuracy. A good trial wave
function should exhibit much of the
same features as does the exact wave
function. One possible guideline in
choosing the trial wave function is the
use of the constraints about the
behavior of the wave function when
the distance between one electron and
the nucleus or two electron approaches
zero. These constraints are called
“cusp conditions’” and are related to the
derivative of the wave function.
Usually the correlated wave function,
y , used in VMC is built as the product

of a symmetric correlation factor, f
which includes the dynamic correlation
among the electrons, times a model
wave function,j , that provides the
correct properties of the exact wave
function such as spin and the angular
momentum of the atom, and is
antisymmetric in  the electronic
coordinates y =j f.

With this type of wave function, and
by using different correlation factor,
the atoms He to Kr have been
extensively studied [11-14]. The aim
of this work is to extend this
methodology to obtain ground date,
and similarly excited states, of the
helium atom. This will be done within
the context of the accurate Born-
Oppenheimer approximation, which is
based on the notion that the heavy
nucleus move slowly compared to the
much lighter electrons.

5. The ground state of the helium
atom

For the ground state, the trial wave
function used in thiswork is given by

y (rrp) =j ()i (rp) £(rg,) (5.1)
where  (r.)is the single-particle wave
function for particle i , and f(r,)
account for more complicated two-
body correlations. For the helium atom,
we have placed both electrons in the
lowest hydrogenic orbit 1s to calculate
the ground state. A simple choice for
j (r)is[15]:

j () =exp(r, /a), (5.2)
with the variational parameter a to be
determined. The final factor in the trial
wave function, f , expresses the
correlation between the two electrons
due to their coulomb repulsion. That is,
we expect f to be small when r,,is
small and to approach a large constant
value as the electrons become well

Separated. A convenient  and
reasonable choiceis



Table-1 Energy of the ground state in
(a u.) units obtained in frame of (VMC)
method, together with the standard
deviation and the experimental data for
comparison.

Calculated | Experimental
Ec -2.8689 2.9037
Standard | 0.0024 NA
deviation
é r u
f(r) =expa / 5.3
(r) pmg (5.3

where a,b are additional positive

variational parameters. The variational
parameter b controls the distance over

which the trial wave function heals to
its uncorrelated value as the two
electrons separate. Using the cusp
conditions [16] we can easy verify that
the variational parameters a,b satisfy

the transcendental  equations
2 2h2
a=——- ada=——-.Thusb is
2me me

the only variational parameter at our
disposal. With the trial wave function
specified by Eq. (6), explicit
expression can be worked out for the
local energy E, (R) in terms of the
values and derivatives of j ,f . The

Monte Carlo process described here
has been employed for the ground state
of the helium atom.

Figure-1 shows the variation of the
ground gate energy with respect to the
variational parameter b .

In Fig-2 we present the variations of
the standard deviation with respect to
the variational parameterb .

The variational parameters appear in
the trial wave function for the 2'Sstate
are taken ast, =.865,t, =.522 and
c=12.

A Variational Monte Carlo (VMC)
has been used to obtain numerical
ground state energy. Figures-1,2 show

that minimum in energy is
accompanied with a minimum in the
standard deviation. The numerical
results are in good agreement with the
experimental results [17].

Table-1 indicates that the energy
minima are in agreement with the
experimental data.

Calculations of the radia wave
functions and the excited states of the
helium aom by using the same
techniqgue of the variational Monte
Carlo method gave results in good
agreement with the corresponding
experimental findings [18].
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Fig-1 The Ground state energy of helium as function of the vaiational parameterb .
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Fig-2 The standard deviation versus the variational parameterb .
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