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Abstract 
The Variational Monte Carlo method is used to evaluate the energy of the ground state of the helium 
atom. Trial wave functions depending on the variational parameters are constructed for this purpose. 
Energies as well as standard deviations are plotted versus the variational parameters. The experimental 
data are presented for comparison.   
   
1. Introduction 
The term Monte Carlo refers to group 
of methods in which physical or 
mathematical problems are simulated 
by using random numbers. Quantum 
Monte Carlo (QMC) techniques 
provide a practical method for solving 
the many-body Schrödinger equation. 
    It is commonly used in physics to 
simulate complex systems that are of 
random nature in statistical physics [1]. 
There are many versions of the QMC 
methods which are used to solve the 
Schrödinger equation for the ground 
state energy of a quantum particle. 
Among them are the diffusion Monte 
Carlo method [2], which is used to 
solve the time-dependent Schrödinger 
equation. Another method is the fixed-
phase Monte Carlo method [3] which 
is used for wave equations that 
consider a magnetic field. 
    The simplest of QMC methods is the 
variational Monte Carlo (VMC) 
technique which has become a 
powerful tool in Quantum Chemistry 
calculations [4]. It is based on 
evaluating a high-dimensional integral 
by sampling the integrand using a set 
of randomly generated points.  It can 
be shown that the integral converges 
faster by using VMC technique than 
more conventional  techniques based 

on sampling the integrand on a regular 
grid for problems involving more than 
a few dimensions. Moreover, the 
statistical error in the estimate of the 
integral decreases and the square root 
of the number of points is sampled, 
irrespective of the dimensionality of 
the problem.  The major advantage of 
this method is the possibility to freely 
choose the analytical form of the trial 
wave function which may contain 
highly sophisticated term, in such a 
way that electron correlation is 
explicitly taken into account. This is an 
important valid feature for QMC 
methods, which are therefore 
extremely useful to study physical 
cases where the electron correlation 
plays a crucial role. 
 
2. Variational Monte Carlo 
Calculations  
The Variational Mont Carlo method [5] 
is based on a combination of two ideas 
namely the variational principal and 
Monte Carlo evaluation of integrals 
using importance sampling based on 
the Metropolis algorithm. It is used to 
compute quantum expectation values 
of an operator. In particular, if the 
operator is the Hamiltonian, its 
expectation value is the varitional 
energy EVMQ,  
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where, TΨ is a trial wave function and 
R is the N3  dimensional vector of 
electron coordinates. According to the 
Varitional principal, the expectation 
value of the Hamiltonian is an upper 
bound on the exact ground state energy 

0E  , that is, 0EEv ≥ . 
    To evaluate the integral in Eq. (2.1) 
we construct first a trial wave function Ψ  ( )  depending on variational 
parameters ).,,.........,( 21 Nαααα = and 
then varies the parameters to obtain the 
minimum energy.  
    Variational Monte Carlo 
calculations determine VMCE  by 
writing it as 
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where M  is the ensemble size of 
random numbers 
{ }MRRR .........,........., 21 and N   is the 
number of ensembles. These 
ensembles so generated must reflect 

the distribution function itself. A given 
ensemble is chosen according to the 
Metropolis algorithm [6]. This method 
uses an acceptance and rejection 
process of random numbers that have a 
frequency probability distribution like 

2Ψ . The acceptance and rejection 
method is due to the work of von 
Neuman [7] and is performed by 
obtaining a random number from the 
probability distribution, )(RP , then 
testing its value to determine if it will 
be acceptable for use in approximation 
of the local energy. Random numbers 
may be generated using a variety of 
methods [8,9]. Finally, it is important 
to calculate the standard deviation of 
the energy,                                                                                 
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3. The Statement of the Problem 
For nucleus with charge Z and infinite 
mass the non-relativistic Hamiltonian 
in atomic units (a. u) reads [10]:    
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where 1r  and 2r denote the relative 
coordinates of the two electrons with 
respect to the nucleus. The potential V
is defined as 
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In  Hylleraas coordinates the above 
Hamiltonian can be written as: 
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where 21 ˆ,ˆ rr  and 12r̂  denotes the unit 
vectors of the corresponding distance. 
In writing Eq. (3.1) we have taken into 
account the Coulomb interactions 
between the particles, but have 
neglected small corrections arising 
from spin-orbit and spin-spin 
interactions. 
    The electronic eigenvalue is 
determined from the Schrödinger 
equation:  

 ),(),( 2121 rrrr Ψ=Ψ EH                  (3.2) 
where, ),( 21 rrψ is the electronic wave 
function. Our goal, now, is to solve the 
six-dimensional partial differential 
eigenvalues  Eq. (3.2) for the lowest 
eigenvalue.   
 
4. The Trial Wave Function 
The choice of trial wave function is 
critical in VMC calculations. How to 
choose it is however a highly non-
trivial task. All observables are 
evaluated with respect to the 
probability distribution 
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generated by the trial wave function. 
The trial wave function must 
approximate an exact eigen state in 
order that accurate results are to be 
obtained. Improved trial wave function 
also improve the importance sampling, 
reducing the cost of obtaining a certain 
statistical accuracy. A good trial wave 
function should exhibit much of the 
same features as does the exact wave 
function. One possible guideline in 
choosing the trial wave function is the 
use of the constraints about the 
behavior of the wave function when 
the distance between one electron and 
the nucleus or two electron approaches 
zero. These constraints are called 
“cusp conditions” and are related to the 
derivative of the wave function. 
Usually the correlated wave function, 
ψ , used in VMC is built as the product 

of a symmetric correlation factor, f , 
which includes the dynamic correlation 
among the electrons, times a model 
wave function, ϕ , that provides the 
correct properties of the exact wave 
function such as spin and the angular 
momentum of the atom, and is 
antisymmetric in the electronic 
coordinates  f ϕψ = . 
    With this type of wave function, and 
by using different correlation factor, 
the atoms He to Kr have been 
extensively studied [11-14].  The aim 
of this work is to extend this 
methodology to obtain ground state, 
and similarly excited states, of the 
helium atom. This will be done within 
the context of the accurate Born-
Oppenheimer approximation, which is 
based on the notion that the heavy 
nucleus move slowly compared to the  
much lighter electrons. 
  
5. The ground state of the helium 
atom 
For the ground state, the trial wave 
function used in this work is given by  

 )()()(),( 122121 rrrrr fϕϕψ =           (5.1) 
where )( irϕ is the single-particle wave 
function for particle i , and )( 12rf
account for more complicated two-
body correlations. For the helium atom, 
we have placed both electrons in the 
lowest hydrogenic orbit 1s to calculate 
the ground state. A simple choice for 

)( irϕ is [15]: 

 )/exp()( aii rr =ϕ ,                         (5.2) 
with the variational parameter a  to be 
determined. The final factor in the trial 
wave function, f , expresses the 
correlation between the two electrons 
due to their coulomb repulsion. That is, 
we expect f to be small when 12r is 
small and to approach a large constant 
value as the electrons become well 
separated. A convenient and 
reasonable choice is  
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Table-1 Energy of the ground state in 
(a. u.) units obtained in frame of (VMC) 
method, together with the standard 
deviation and the experimental data for 
comparison. 
     
 Calculated Experimental 

VMCE  -2.8689 2.9037 
Standard 
deviation 

0.0024 NA 
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where βα , are additional positive 
variational parameters. The variational 
parameter β  controls the distance over 
which the trial wave function heals to 
its uncorrelated value as the two 
electrons separate. Using the cusp 
conditions [16] we can easy verify that 
the variational parameters βα ,  satisfy 
the transcendental equations :   

2

2

2me
a h

=    and 2

22
me
h

=α . Thus β  is 

the only variational parameter at our 
disposal. With the trial wave function 
specified by Eq. (6), explicit 
expression can be worked out for the 
local energy )(RLE  in terms of the 
values and derivatives of f,ϕ . The 
Monte Carlo process described here 
has been employed for the ground state 
of the helium atom. 
    Figure-1 shows the variation of the 
ground state energy with respect to the 
variational parameter β .  
    In Fig-2 we present the variations of 
the standard deviation with respect to 
the variational parameter β .  
    The variational parameters appear in 
the trial wave function for the S12 state 
are taken as 865.1 =τ  , 522.2 =τ  and 

2.1=C .  
     A Variational Monte Carlo (VMC) 
has been used to obtain numerical 
ground state energy. Figures-1,2 show 

that minimum in energy is 
accompanied with a minimum in the 
standard deviation. The numerical 
results are in good agreement with the 
experimental results [17].   
    Table-1 indicates that the energy 
minima are in agreement with the 
experimental data.  
    Calculations of the radial wave 
functions and the excited states of the 
helium atom by using the same 
technique of the variational Monte 
Carlo method gave results in good 
agreement with the corresponding 
experimental findings [18].   
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Fig-1 The Ground state energy of helium as function of the vaiational parameter β .    
 
 

 
 
Fig-2 The standard deviation versus the variational parameter β .    
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