
 
 

 

  
Abstract—Underactuated mechanism have recently 

attracted a lot of attention because they represent a rich class of 
control system from a control stand point and because they 
offer robot price reduction due to robot link mass reduction 
and lower a number of robot actuators. In contrast to the 
system with full controls, a super articulated mechanical 
system (SAMS) is a controlled mechanical system in which the 
dimension of the configuration space exceeds the dimension of 
the control input space. The main objectives of the research are 
to develop a new SAMS model, which is called 
cart-seesaw-pendulum system. The system consists of two 
mobile carts, which are coupled via rack and pinion mechanics 
to two parallel tracks mounted on pneumatic rodless cylinders. 
The cylinder was double-acting. One cart carries an inverted 
pendulum, which is free to fall. The other cart serves as a 
counterbalance. Forces are applied to each cart. All the 
elements are mounted on the seesaw platform. The seesaw is 
jointed and frees to rotate in unison about the pivot point. The 
goal is to control the seesaw angle and the pendulum-carrying 
cart position while keeping the pendulum upright. The 
dynamic formulation is the first proposed for control purposes 
of such new model. Numerous simple real-time experiments 
were performed to verify the function of this new model. 
Consequently, the proposed software/hardware platform can 
be also profitable for the standardization of laboratory 
equipment, as well as for the development of entertainment 
tools. 

I. INTRODUCTION 

Underactuated mechanisms have recently attracted 
significant attention owing to their ability not only to 
represent a rich class of control system from a control stand 
point, but to reduce the cost of robots by decreasing the link 
mass and the number of robot actuators [1]. Contrary to the 
system with full controls, a super articulated mechanical 
system (SAMS) is a controlled underactuated mechanical 
system in which the dimension of the configuration space 
exceeds the dimension of the control input space. For 
example, inverted pendulum on a cart, ball and beam 
problem, mass sliding on a cart and robots with joint 
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elasticity, underactuated bipedal robot, nonholonomic 
mobile robot, etc, all is SAMS [2]. 

A super-articulated mechanical system presents 
challenges that are not found in a system with full controls, 
in which the dimensions of the configuration space equals 
the dimension of the control input space. Literature [3-6] on 
motion planning and control of nonholonomic systems has 
indicated the difficult yet interesting features of control 
synthesis for SAMS.  

The ball and beam system is a common undergraduate 
control laboratory experiment [7]. Control of the ball and 
beam system has been widely discussed in teaching and 
research literature. However, discovering a control law to 
stabilize the system remains an active topic of research 
discussion. 

The ball and beam mechanism generally comprises a 
beam with a ball on it. The ball rolls on the beam according 
to the changing angle of the beam. A ball moving on a beam 
is a typical nonlinear dynamic system, which is often 
adapted to proof-test diverse control methods [8]. Such a 
system may be adopted as a control-training tool by 
engineering students to test industrial processes and their 
applications. 

Moreover, the “ball and the beam” system is well 
documented as an example of a system that requires an 
active control system to maintain the ball at a desired beam 
position. Several approaches have been presented to control 
the ball and beam system during the past decades, for 
example, input-output feedback linearization [8], robust 
nonlinear control [9-10] and fuzzy logic control [11-13]. 
However, all of the above papers are based on the same 
conventional ball-on-beam plant, in which the ball is rolling 
on the beam according to the changing angle of the beam. 
The system lacks a new mechanism for other control 
purposes. However, the review of the above papers indicates 
that no researchers have attempted to control a 
ball-and-beam mechanism by a pneumatic cylinder for 
actuation. 

Furthermore, the paper proposes a new cart-seesaw 
system is shown in [14]. The seesaw can rotate only in a 
vertical plane, with one degree of freedom, and the cart 
slides along the seesaw by applying a force with a pneumatic 
device. This study investigation serves as a reference of the 
achievable control behavior for the underactuated 
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mechanism, and covers the extension of the curriculum to 
the control of the underactuated robots.  

Pneumatic cylinders are sometimes considered to offer a 
better alternative to electrical or hydraulic actuators for 
certain types of applications. Unfortunately, owing to the 
compressibility of air, highly nonlinear behavior and time 
delay resulting from the slow propagation of pressure waves, 
position and force control of these actuators are difficult 
[15].  

This work is the extension of the author’s previous work 
[14]. In literature [14], the ball-and-beam-like mechanism of 
that research replaces the ball is replaced with a cart, which 
slides ‘frictionlessly’ on the pneumatic rodless cylinder. The 
proposed system consists of only one sliding cart. However, 
the main objectives of this research are to develop a new 
SAMS, which is called cart-seesaw-pendulum system. The 
system consists of two mobile carts, which are coupled via 
rack and pinion mechanics to two parallel tracks mounted on 
pneumatic rodless cylinders. The cylinder was double-acting. 
One cart carries an inverted pendulum, which is free to fall. 
The other cart serves as a counterbalance. Moreover, an 
adjustable counterweight mass is installed underneath the 
seesaw to serve as a damping mechanism to absorb impact 
and shock energy. All the elements are mounted on the 
seesaw platform. The seesaw is jointed and frees to rotate in 
unison about the pivot point. The goal is to control the 
seesaw angle and the pendulum-carrying cart position while 
keeping the pendulum upright. The proposed work will serve 
us as a reference of the achievable control behavior for the 
underactuated mechanism. 

 

II. SYSTEM CONFIGURATION 

Figure 1 indicates the conceptual model of a 
cart-seesaw-pendulum system. Figure 2 depicts the 
visualization of this cart-seesaw system, and indicates some 
important devices in such a system. The system consists of 
two mobile carts, which are coupled via rack and pinion 
mechanics to two parallel tracks mounted on pneumatic 
rodless cylinders. The cylinder was double-acting. One cart 
carries an inverted pendulum, which is free to fall. The other 
cart serves as a counterbalance. Forces are applied to each 
cart. The seesaw is jointed and frees to rotate in unison about 
the pivot point. Moreover, a linear potentiometer was 
utilized to measure the position of the sliding cart, and rotary 
potentiometers were adopted to measure the seesaw and 
inverted pendulum angles respectively. Additionally, the cart 
position was measured from the seesaw center, and was 
positive if the cart was on the right side of the seesaw. 
Similarly, the rotary potentiometer was adopted to measure 
the seesaw and inverted pendulum angle. The seesaw angle 
was positive if the seesaw rotated counterclockwise from 
horizon. 

Furthermore, the seesaw falls to the definite direction 
instantaneously if the cart runs to a particular place, thus 
creating instantaneous dynamic instability. Hence, in 
dynamical improvement aspect, adjustable counterweight 
mass is installed underneath the seesaw to serve as a 

damping mechanism to absorb impact and shock energy. 
This mechanism is called dynamic balance apparatus. 

The experimental pneumatic system was composed of 
two pneumatic rodless cylinder 510 mm long, four 
controlled proportional valves, and a source of compressed 
air. The air supply to the cylinder was manipulated by an 
electro-pneumatic transducer that provided an air pressure 
proportional to the supply voltage. Each direction of motion 
was selected by appropriate actuation of the 3/2-way 
electro-valves (model type: SMC VEF 3121-1), which 
converted the electrical signal to proportional airflow. Fig. 3 
displays the pneumatic control circuit.  

 
Fig. 1 Conceptual model of the proposed system 

 
Fig. 2 Visualization of Cart-Seesaw System 



 
 

 

 
Fig. 3 Control circuit for the proposed system 

 

III. DYNAMIC MODELING 

In this section, a mathematical model of the pneumatic 
cart-seesaw-pendulum system is obtained from 
independently known dynamics. Consider the cart-seesaw 
system illustrated in Fig. 4. The cart-seesaw-pendulum 
system brings the cart from any initial position with any 
initial speed to a desired position on the seesaw by applying 
an appropriate force to the cart, and thus adjusting the angle 
of the seesaw. The cart 1 and cart 2 sliding on the seesaw 
indicates the first and second degree of freedom respectively, 
which is actuated by a pneumatic proportional control valve, 
and the angle of a seesaw and inverted pendulum represents 
the third and fourth degrees of freedom, which are not 
actuated. 
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Fig. 4 Dynamic model for Cart-Seesaw-Pendulum system 

 
Let the moment of inertia of the seesaw be J; the gravity 

acceleration g, and the mass of the sliding carts be 
1m  and 

2m , respectively. The counterweight mass 
3m  and its length 

3l  is attached on the underneath of the seesaw to serve as the 
vibration damper in order to absorb impact and shock energy. 
Moreover, the mass of inverted pendulum is 

5m  and 
assumes that the mass is concentrates at the midpoint of the 
pendulum. 

5l  is the half length of the inverted pendulum. 
Furthermore, θ  is the seesaw angle and α  is the pendulum 
angle. 

1F  and 
2F  are the applied force to each cart, 

respectively. The main goal is to control the seesaw angle 
and the pendulum-carrying cart position while keeping the 
pendulum upright. Hence, the whole system can be divided 
into five subsystems – cart 1, cart 2, counterweight mass, 
seesaw, and inverted pendulum. Therefore, we can compute 
the kinetic energy and potential energy for these subsystems 
and then derive the global dynamic equations. Selecting the 
slide carts position 

1x  and 
2x , the seesaw angle θ , and the 

pendulum angle α  as generalized coordinates for the 
system, by using the Lagrangian formulation, the dynamic 
equations can be derived as the following procedure. 
First, we compute the kinetic energy of cart 1 
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Then, the kinetic energy of cart 2 can be written as 
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Similarly, the kinetic energy for the counterweight mass is 
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and the kinetic energy of the seesaw 
2
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Furthermore, in order to derive the kinetic energy of the 
inverted pendulum, we assume that the entire mass of the 
pendulum is concentrated on the point of the center of mass. 
Then the position vector in the X and Y direction can be 
defined as 
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The velocity in the X and Y direction is 
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Hence, the kinetic energy of the inverted pendulum is 
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Next, we calculate the potential energy for each 
subsystem. 
Potential energy of cart 1 

θsin111 gxmP =                                          (8) 
Potential energy of cart 2 

θsin222 gxmP =                                          (9) 
Potential energy of the seesaw 

θcos333 glmP −=                                                        (10) 
Potential energy of the inverted pendulum 

]coscossin)sin[( 52555 θαθα lxlgmP ++=                (11) 
Then, the total kinetic energy of the whole system is 

54321 KKKKKK ++++=                                      (12) 
Similarly, the total potential energy of the whole system is 

5321 PPPPP +++=                                           (13) 
Now, we derive the equation of motion by using 

Lagrange’s formulation: 
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where L=K-P, [ ]αθ21 xxqi = , and 

[ ]0021 FF=τ . 
Therefore, the dynamic equation can be shown in the 

following matrix form: 
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where 
ijM  denote the element of inertia matrix, 

iN  is the 

Coriolis/centrifugal term, and 
iG  means the gravity term. 

Finally, the detail symbolic term of Eq. (15) are indicated 
as below 
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The inertia matrix of the overall system M(x) shown in 

Eq. (15) is symmetric and positive definite. Therefore, the 
inertia matrix M(x) which is uniformly bounded both from 
above and from below, namely, satisfies 

4444 )( ×× ≤≤ ImxIm M ,     
where m  and m  are positive constants, and 

44×I  is the 
identity matrix. 

The resulting equations above demonstrate that the 
element of the dynamic equation matrix is very complex and 
highly nonlinear. Because manual symbolic expansion for 
such system is tedious, time consuming, and prone to errors, 
an automated derivation process is highly desirable. 
Therefore, a symbolic program written in MATLAB to 
generate the dynamic equations for such system is used in 
this research. 

 

IV. PREPLINARY RESULTS AND DISCUSSIONS 

In order to test the function of the new mechanism of 
cart-seesaw-pendulum system, numerous real-time 
experiments were performed to verify the system. The aim of 
the experiment was to achieve a desired sliding mass 
position on the cart subjected to the different location of the 
counterweight mass. Double solenoid proportional direction 
control valves were used to drive two double-acting 
pneumatic rodless cylinders. The air supply was regulated to 
6 bar (6kgf/cm²). The controller of the cart-seesaw system is 
composed of two NI DAQ boards (PCI-MIO-16E-4 and 
PCI-6174) with a host personal computer. The controller 
board with its real time software interface permits rapid 
control prototyping in connection with LabVIEW, thus 
enabling a quick implementation of the proposed 
supervisory control approach on the basis of the real-time 
block model applied in LabVIEW. 



 
 

 

To achieve the best possible control of a particular 
system, as much information about the system as possible 
should be used when designing a controller. Simple 
experimental test is typically necessary for comparing the 
performance of controllers acting on a nonlinear system. In 
this section, we simplify the system to cart-seesaw system. 
The inverted pendulum is neglected in this test. Therefore, 
the main objective of the test is to investigate the 
stabilization of the equilibrium point for the seesaw. 

Figure 5 plots the time response for carts position (Fig. 
5a) and seesaw angle (Fig. 5b) with adjustable 
counterweight mass which locates under the seesaw 

cm93 =l . It demonstrates that the counterweight mass owns 
a damping capability to stabilize the dynamic system. 
Moreover, while the adjustable counterweight mass locates 
under the seesaw cm183 =l , the seesaw angle limitation will 
become smaller (Fig. 6). Furthermore, adjusting the location 
of the counterweight mass will further change the seesaw 
angle limitation. Figure 7 indicates that the seesaw angle 
limitation becomes smaller while the counterweight mass 
device farther from the seesaw ( cm273 =l ) applied. The 
farther from the seesaw of the counterweight mass device, 
the smaller seesaw angle limitation. Consequently, the 
proposed counterweight mass device produced a substantial 
improvement in performance of the seesaw equilibrium 
motion. The counterweight mass device can serve as a 
damping mechanism to absorb impact and shock energy. 
This mechanism is called dynamic balance apparatus. Hence, 
the proposed counterweight mass device is a powerful and 
efficient way to cope with such a cart-seesaw system. 

Due to the time and space limitation, this research only 
investigates some simple experimental test to verify the 
performance of the proposed cart-seesaw-pendulum system. 
However, the development the proposed software/hardware 
platform can be also profitable for the standardization of 
laboratory equipment, as well as for the development of 
entertainment tools. It can provide with the experimental 
apparatus for the interesting person to explore the 
performance for such system. 

 

V. CONCLUSIONS 
This work is the extension of the author’s previous work 

[14] and modifies to a new SAMS model. The main 
objective of this research is to develop a model, which is 
called cart-seesaw-pendulum system. The system consists of 
two mobile carts, which are coupled via rack and pinion 
mechanics to two parallel tracks mounted on pneumatic 
rodless cylinders. The cylinder was double-acting. One cart 
carries an inverted pendulum, which is free to fall. The other 
cart serves as a counterbalance. Forces are applied to each 
cart. The seesaw is jointed and frees to rotate in unison about 
the pivot point. In order to absorb impact and shock energy, 
the adjustable counterweight mass is attached on the 
underneath of the seesaw. The dynamic formulation is the 
first proposed for control purposes of such new model. The 

result of the proposed software/hardware platform can be 
also profitable for the standardization of laboratory 
equipment, as well as for the development of entertainment 
tools. Therefore, the future work will demonstrate the 
controller design and verify the performance for such 
system.   

REFERENCES 
[1] S. Uran and K. Jezernik, “Control of a ball and beam like mechanism,” 

AMC 2002, pp. 376-380. 
[2] G. Wang, Y. Tian, W. Hong, “Stabilization and equilibrium control of 

super articulated ball and beam system,” Proc. of the 3rd World 
Congress on Intelligent Control and Automation, 2000, pp. 
3290-3293. 

[3] S. Seto and J. Baillieul, “Control Problems in Super-Articulated 
Mechanical Systems,” IEEE Trans. on Automatic Control, Vol. 39, No. 
12, 1994, pp. 2442-2453. 

[4] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch, “Control and 
stabilization of nonholonomic dynamic systems,” IEEE Trans. on 
Automatic Control, Vol. 39, No. 12, 1992, pp. 1746-1757. 

[5] G. Lafferriere and H. J. Sussmann, “Motion planning for controllable 
systems without drift,” in Proc. IEEE Int. Conf. Robotics and 
Automation, Sacramento, California, 1991, pp. 1148-1153. 

[6] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: 
steering using sinusoids,” IEEE Trans. on Automatic Control, Vol. 38, 
1993, pp. 700-716. 

[7] M. T. Hagan and C. D. Latino, “An interdisciplinary control systems 
laboratory,” Proc. of the IEEE International Conference on Control 
Applications, 1996, pp. 403-408. 

[8] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via 
approximate input-output linearization: the ball and beam example, 
IEEE Trans. on Automatic Control, Vol. 37, No. 3, 1992, pp. 392-398. 

[9] J. Huang and C.-F. Lin, “Robust nonlinear control of the ball and beam 
system,” Proc. of the American Control Conference, 1995, pp. 
306-310. 

[10] A. T. Simmons and J.-Y. Hung, “Hybrid control of system with poorly 
defined relative degree: the ball-on-beam example,” Proc. of the 30th 
Annual Conference of the IEEE Industrial Electronics Society, 2004, 
pp. 2436-2440. 

[11] H. K. Lam, F. H. F. Leung, and P. K. S. Tam, “Design of a fuzzy 
controller for stabilizing a Ball-and-Beam system,” IECON 
Proceedings, 1999, pp. 520-524. 

[12] P. H. Eaton, D. V. Prokhorov, and D. C. Wunsch II, “Neurocontroller 
Alternatives for “Fuzzy” ball-and-beam systems with nonuniform 
nonlinear friction,” IEEE Trans. on Neural Network, Vol. 11, No. 2, 
2000, pp. 423-435. 

[13] X. Fan, N. Zhang, and S. Teng, “Trajectory planning and tracking of 
ball and plate system using hierarchical fuzzy control scheme,” Fuzzy 
Sets and Systems, Vol. 144, 2003, pp. 297-312. 

[14] J. Lin, J.H. Zhan, and Julian Chang, “Stabilization and Equilibrium 
Control of New Pneumatic Cart-Seesaw System,” Robotica, Vol. 26, 
No. 2, 2008, pp. 219-227. 

[15] E. Richer and Y. Hurmuzlu, “A high performance pneumatic force 
actuator system: Part I – Nonlinear Mathematical Model,” Trans. of 
the ASME Journal of Dynamic Systems, Measurement, and Control, 
Vol. 122, 2000, pp. 416-425. 
 



 
 

 

0 10 20 30 40 50 60 70
-40

-30

-20

-10

0

10

20

30

40

time (sec)

cm

 

 
x1
x2

(a) Position of cart 1 and cart 2 
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(a) Seesaw angle 
Fig. 5 Position response of the cart-seesaw system 

(counterweight mass cm93 =l ) 
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(a) Position of cart 1 and cart 2 
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(b) Seesaw angle 

Fig. 6 Position response of the cart-seesaw system 
(counterweight mass cm183 =l ) 
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(a) Position of cart 1 and cart 2 
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(b) Seesaw angle 

Fig. 7 Position response of the cart-seesaw system 
(counterweight mass cm273 =l ) 


