
Design of a High Speed SHA-1 Architecture Using Unfolded

Pipeline for Biomedical Applications

Eun-Hee Lee, Seok-Man Kim, Je-Hoon Lee, Kyoungrok Cho
Dept. of ECE, Chungbuk National University

12 Gaeshin-dong Heungduk-ku, Cheongju City, Korea 361-763
 ehlee@hbt.cbnu.ac.kr, krcho@cbnu.ac.kr

ABSTRACT

ash functions are a special family of cryptographic
algorithms, which are applied widely wherever

message integrity and authentication issues are critical. It
is used in many security protocol like that TLS, SSL,
PGP, SSH and IPSec. In this paper, we propose a high
performance Hash coding architecture that computes next
round coefficient in the present round in parallel. We
optimize the critical path and hence the clock frequency
by reorganizing of computation ordering of the functional
blocks. In addition, we employ a pipeline architecture
that computes Hash code for 512 bits block data in each
clock hence high throughputs becomes possible. The
proposed architecture provides more than 10%
performance improvement as well as a 20% reduction in
hardware size when compared with the previous
implementations [2, 5, 8, 9, 10, 11 and 12].

Keywords: Hash function, security throughput, high
speed, cryptographic, SHA-1

1. INTRODUCTION

In recent years effective and secure communications in
networks and programs within the consumer electronics
area is emerging as a critical part of systems
implementation. Cryptographic Hash functions are
important in modern cryptography. A typical technique is
to extract Hash code of messages, IP packets and disk
files which results in a large, possibly variable-sized
amount of data to be converted into a small but fixed
datum. If a message is signed in by a Hash function, the
computation load, memory and transmission load become
low. In other words, if a Hash code is made from an input

data, it is impossible to find the original input data from
the Hash code. Data origin authentication and message
integrity can be obtained if public-key or symmetric-key
encryption is applied to the Hash code. Hash functions
have key features such as one-way function property,
collision resistance and their high speed coding.
Data sizes and communication speeds are dramatically
increasing every year. Therefore, low throughput of Hash
functions can be a bottleneck in the digital and/or
communications systems. In order to solve this problem,
unfolding [4] and pipeline technique [5] are applied.
Unfolding technique decreases the need for clock cycles
and a pipeline technique makes the critical path shorten.
However, unfolding factor increases critical path delay in
a computation loop.
In this paper, we present an optimized architecture for
Hash coding that computes the next stage coefficient in
the present stage in parallel. This paper is organized as
follows: In section II past implementation strategy of the
SHA-1 is presented. Sections III provides our proposed
architecture. Section IV shows results of throughput and
area of the new SHA-1 architecture when compared with
other implementations. Finally, conclusions are in section
V.

2. CONVENTIONAL SHA-1

Secure Hash Algorithm (SHA) and its improve version
[1] was developed by NIST (National Institute of
Standards and Technology). According to SHA standard,
SHA-1 requires 4 iterations of 20 operations that results
in a total of 80 operations to generate the message digest
for 512 bits data. The architecture of two consecutive
operations of Hash function is illustrated in Figure 1

H

mailto:ehlee@hbt.cbnu.ac.kr

where each and all , , , , are 32-bit

which resulting in 160 bit Hash code output. Eq. (1)
shows the model for one single operation. The scrambling
constant , and a non-linear function are updated

in each round operation. The constants and

are used for iteration of the Hash computation.

indicates rotation of

ta tb tc td te

tk tf

tk tw
t

)(xROTLn x by positions to

the left. is a non-linear function of SHA-1

which is usable on operation .

n
),,(zyxft

t

Figure 1. Architecture of 2 consecutive SHA-1

ttttttttt kwedcbfaROTLa ++++= −−−−− 11111
5),,()(

1−= tt ab

)(1
30

−= tt bROTLc

1−= tt cd

1−= tt de (1)

Inputs , , , , illustrated in

Figure 1 go through two consecutive SHA-1 functional
blocks that result in outputs , , , and

. Outputs , , , , from the first SHA-

1 computation block become inputs for the second SHA-
1 computation block. Signals , , , except

, are derived from the inputs , , ,

respectively. This implies that , and can

be derived from , , respectively.

Calculations for and require inputs

and , respectively. Also, , and ,

are known constants available prior the commencement
of computation. Therefore the two computations can be
performed concurrently. This approach is illustrated in
Figure 2. The dotted area on Figure 2 indicates part of
SHA-1 block that operates in parallel and highlights the
critical path which has only an addition. The with

three addition levels is computed in parallel with

that is two addition. Thus, to compute completely,

an extra addition stage is required.

1−ta 1−tb 1−tc 1−td 1−te

1+ta 1+tb 1+tc 1+td

1+te ta tb tc td te

tb tc td te

ia 1−ta 1−tb 1−tc 1−td

1+tc 1+td 1+te

1−ta 1−tb 1−tc

1+ta 1+tb 1−td

1−te tk tw 1+tk 1+tw

1+tb

1+ta

1+ta

Figure 2 SHA-1 operation block that unfolding
factor is 2

Although, the architecture in Figure 2 reduces the
maximum operating frequency due to increasing critical
path, the throughput is significantly increased because #
of operations and # of used clocks are reduced by half.
The throughput is given as Eq. (2).

operations
fbits

Throughput operation

#
×

= (2)

From the Eq. (2), the expected operating frequency for
Figure 2 will be higher about 25% since the critical path

has been changed from three to four addition levels
comparing to non-concurrent implementation. However,
Hash code in the Figure 2 is computed in only 40 clock
cycles instead of 80 in the non-concurrent
implementations. This computation leads to the result that
throughput of the Figure 1 increases by 35%.
Critical path delay is increased by the unfolding factor
thus degrading the throughput. Therefore improvement
comes through SHA-1 architecture which employs the
pipeline technique to improve higher throughput. SHA-1
architecture is based on four stages pipeline [5]. The
SHA-1 architecture requires a different non-linear
function every 20 clock cycles. Taking on design
elements from [4], the four functional blocks are
iteratively used during every 20 clock cycles. The
architecture allows parallel operation of the four
functional blocks that introduces a 20 cycle latency which
is four times the throughput of those reported in [4] [5]
[11] and [12]. Furthermore, power dissipation and area
penalty are kept low compare with the implementation in
[3].

3. THE PROPOSED DESIGN

The conventional implementations [6][7][8][11] and [12]
employ four stages pipeline for a function block.
Throughput is increased by a factor of 4 since a Hash
code is produced every 20 clock cycles instead of 80. The
computation of forms the critical path as it requires

three additions and one non-linear function delay as
shown in Figure 1. Decreasing the critical path delay
makes higher throughput. The modified architecture for
SHA-1 is illustrated in Figure where Figure 3(a) shows a
conventional architecture with three consecutive SHA-1
blocks. The signals , , , are initial

constant of H0~H4. The and also are

predictable. Except for , the other signals , ,

, are derived directly from the inputs , ,

, respectively. In addition, is derived

directly from the input . The signal of round

is able to be obtained in t round. is a

computation of , , which is derived through

inputs , , . This means that used in

 round is able to compute in round. The critical
path for conventional approach is , where delay

of adder block. On the other hand, the optimized circuit
illustrated in Figure 3(b) shows the critical path being
only being reduced by one adder path delay.
Figure 3(b) is an optimized circuit of the shaded area in
Figure 3(a).

ta

1−ta 1−tb 1−tc 1−td

tw tk

ta tb tc

td te 1−ta 1−tb

1−tc 1−td 1+te

1−tc 2+t

1+tf

tb tc td

1−ta 1−tb 1−tc 1+tf
1+t t

Ta3 Ta

Ta2

at-1 bt-1 ct-1 dt-1 et-1

kt+wt
ft

+

+

+

at bt ct dt et

at+1 bt+1 ct+1 dt+1 et+1

kt+1+wt+1+

+

+

ft+1

at+2 bt+2 ct+2 dt+2 et+2

kt+2+wt+2+

+

+

ft+2

Round
t

Round
t+1

Round
t+2

(a) A conventional architecture with three

at-1 bt-1 ct-1

+

at bt ct dt

kt+2+wt+2

dt-1 jt-1

ft+1

et ht jt

ht-1

+

gt-1

gt

+

Round
t

(b) A optimized architecture

Figure 3. Design flow for the proposed architecture

Figure 4 shows architecture with an unfolding factor two
that computes SHA-1 in 40 clock cycles. Even though
it has an unfolding factor of two, the critical path is .
C

Ta3
omparing with Figure 3(b) where the unfolding factor is

one with 80 clocks, the critical path delay adds an

javascript:flink(%22with%22);

additional Ta . The architecture with unfolding factor
two uses 40 Ta clock cycles that results in an increase of
throughput by some 35%. If we apply pipeline technique
to SHA-1, the throughput increases by a factor of 4.

Figure 4 proposed SHA-1 operation block

However, it takes 40 clock cycles in four stage pipelines
as one round uses 10 clock cycles. Thus, we have to wait
10 clocks to get the Hash code of the next data block. We
modified the architecture that each pipeline stage requires
a clock cycle. Although the architecture increases area,
the throughput will be significantly higher.

4. RESULTS AND COMPARISONS

We evaluate the proposed SHA-1 architecture on
XININX 2 Family FPGA xc2v1000. The design was
fully verified using a large set of test messages that is the
test example proposed by the standard [1]. In Table 1, the
proposed implementations are compared to the
implementation of [2], [5], [8], [9], [10], and [11]. The
proposed_1 with 4 stage pipelines and the unfolding
factor two in Figure 4 shows maximum operating
frequency and throughput 98.3MHz and 5.0Gbps,
respectively. As a result, there is 10% increase of the
throughput compared to the previous best implementation.
The proposed_2 is a fully pipelined architecture with
unfolding factor of two that each pipeline stage requires
one clock cycle. The architecture shows 10 times higher
throughput than the conventional ones.

Table 1 Performance characteristics and comparisons

Implemen
-tation

Freq.
(MHz)

Throughput
(Mbps)

Area
(CLBs)

[2] 38.6 900.0 1550

[5] 55.0 1339 2245

[8] 55 2816 -

[9] 98.7 2526.7 950

[10] 127.4 3261 -

[11] 41.5 3541 4258
Slices

[12] 91 4715.0 1212

Proposed_1 98.3 5032.9 3442
Slices

Proposed_2 98.3 50329 28741
slices

5. CONCLUSION

SHA-1 is a popular Hash algorithm and is suitable for
high speed crypto graphing. In this paper, we proposed a
new architecture reducing critical path of SHA-1 function
block that enhances speed of Hash algorithm. As the
results, the proposed architecture shows more than 10%
performance up and 20% smaller hardware size compared
with the previous implementations. The high speed SHA-
1 is able to speed up either table lookup or data
comparison tasks for biomedical applications. The SHA-1
can be used to generate a condensed message. The high-
speed Hash algorithm strengthens the security of mobile
communication and internet service.

6. REFERENCES

[1] FIPS PUB 180-2, Secure Hash Standard (SHA-1),
National Institute of Standards and Technology (NIST),
1996

[2] J.M., Diez, S., Bojanic, C., Carreras, and O., Nieto-
Taladriz, “Hash Algorithms for Cryptographic
Protocols: FPGA Implementation”, in Proc. of
TELEFOR, 2002

[3] S., Dominikus, “A Hardware Implementation of D-4
Family Hash Algorithms”, in Proc. of ICECS, pp. 24-
27, 2003

[4] G., Selimis, N., Sklavos, and O., Koufopavlou,
“VLSI Implementation of the Keyed-Hash Message
Authentication Code for the Wireless Application
Protocol”, in Proc. of ICECS, pp. 24-27, 2003.

[5] N., Skavos, G., Dimitroulakos, and O., Koufopavlou,
“An Ultra High Speed Architecture for VLSI
Implementation of Hash Functions”, in Proc. of ICECS,
pp. 990-993, 2003

[6] R. Lien, T. Grembowski, K. Gaj, “A 1 Gbit/s
Partially Unrolled Architecture of Hash Functions
SHA-1 and SHA-512”, in Proc. of LNCS,vol. 2964, pp.
324-338, 2004

[7] H.E. Michail, A.P. Kakarountas, Georgee N. Selimis,
and Costas E. Goutis, " Optimizing SHA-1 Hash
Function for High Throughput with a Partial Unrolling
Study", in Proc. of PATMOS, pp. 591-600, 2005

[8] H.Michail, A.P. Kakarountas, O. Koufopavlou and
C.E. Goutis, “A Low-Power and High-Throughput
Implementation of the SHA-1 Hash Function", in Proc.
of ISCAS, pp. 23-26 May, 2005

[9] A.P. kakarountas, G. Theodoridis, T. Laopoulos, and
C.E Goutis "High-Speed FPGA Implementation of the
SHA-1 Hash Function", in Proc. of IDAACS, pp. 211-
215, September 2005.

[10] Michail, H.E.

 “

Kakarountas, A.P. Milidonis,
A.S. Panagiotakopoulos, G.A. Thanasoulis,
V.N. Goutis, C.E. Temporal and System Level
Modifications for High Speed VLSI Implementations
of Cryptographic Core” in Proc. of ICECS, pp. 1180-
1183, 2006

[11] Y. K. Lee, H. Chan and I.Verbauwhede,
"Throughput Optimized SHA-1 Architecture Using
Unfolding Transformation", in Proc. of ASAP, pp. 354-
359, 2006.

[12] Michail, H. Goutis, C., “Holistic Methodology for
Designing Ultra High-Speed SHA-1 Hashing
Cryptographic Module in Hardware”, in Proc. of
EDSSC, pp. 1-4, 2008.

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(michail%20%20h.%20e.%3cIN%3eau)&valnm=Michail%2C+H.E.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20kakarountas%20%20a.%20p.%3cIN%3eau)&valnm=+Kakarountas%2C+A.P.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20milidonis%20%20a.%20s.%3cIN%3eau)&valnm=+Milidonis%2C+A.S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20milidonis%20%20a.%20s.%3cIN%3eau)&valnm=+Milidonis%2C+A.S.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20panagiotakopoulos%20%20g.%20a.%3cIN%3eau)&valnm=+Panagiotakopoulos%2C+G.A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20thanasoulis%20%20v.%20n.%3cIN%3eau)&valnm=+Thanasoulis%2C+V.N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20thanasoulis%20%20v.%20n.%3cIN%3eau)&valnm=+Thanasoulis%2C+V.N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20goutis%20%20c.%20e.%3cIN%3eau)&valnm=+Goutis%2C+C.E.&reqloc%20=others&history=yes

