
FPGA HARDWARE DESIGN, SIMULATION AND SYNTHESIS FOR A
INDEPENDENT COMPONENT ANALYSIS ALGORITHM USING SYSTEM-LEVEL

DESIGN SOFTWARE

Alan Paulo Oliveira da Silva∗, Ana Maria Guimarães Guerreiro∗, Adrião Duarte Dória
Neto∗

∗Federal University of Rio Grande do Norte,
UFRN - CT - PPgEEC,

Campus Universitário - Centro de Tecnologia - 59072-970,
Natal, RN. Brazil

Emails: alan@dca.ufrn.br, anamaria@dca.ufrn.br, adriao@dca.ufrn.br

Abstract— In this work we proposed the design, simulation and synthesis of a hardware that performs the
Independent Component Analysis (ICA) in a reconfigurable hardware platform, more specifically a FPGA. The
simulation of the hardware was done by models implemented in Simulink environment and the synthesis was
possible through the Altera system-level design software DSP Builder, that contains specific FPGA blocks that
can be synthesized in hardware. In order to validate the hardware, manually generated data and real electroen-
cephalogram signals were used in the experiments.

Keywords— ICA, FPGA.

1 Introduction

Independent Component Analysis is a tech-
nique main applied in Blind Source Separation
(BSS) problems that estimates source signals from
its observed mixtures. This technique can be
used in many signal process applications such
as biomedical applications, noise extraction and
telecommunications.

This work proposes the design, simulation and
the synthesis of a reconfigurable hardware that
performs the ICA technique by implementing the
fixed-point algorithm, FastICA, in a Altera Cy-
clone II FPGA board.

Signals generated manually in Simulink and
real electroencephalogram signals were used to
perform the simulations while the hardware syn-
thesis was possible through the system-level de-
sign software called DSP Builder, from Al-
tera Corporation1, which contains specific Altera
FPGA blocks for the use in Simulink models that
can be synthesized in a Altera FPGA board. The
electroencephalogram signals were extracted from
experiments done by the International Institute
of Neuroscience of Natal Edmond and Lily Safra
- IINN-ELS2.

Some efforts have been done by researchers
to work with ICA and implement in hardware at-
tacking several problems. Some of these works are
cited below. In 2001, Nordin, Hsu and Szu pro-
posed a FPGA design of the algorithm FastICA
applied in hiper-spectral (HIS) image processing.
These images are generally used in problems of
remote recognition of geographical areas. They
translated part of the code available in the Fas-

1http://www.altera.com
2http://natalneuroscience.com

tICA Package3 in C language modules and made
simulations (Anis Nordin and Szu, 2001).

Du and Qi proposed a new parallel implemen-
tation of ICA technique in a FPGA platform (Du
and Qi, 2004) to perform dimension reduction in
hyper-spectral images (HIS) with the main goal
of reducing the computational time necessary to
process the great amount of data present in HIS
processing.

In 2005, Charoensak and Sattar proposed the
generation of a Simulink model that performs the
BSS problem using an ICA algorithm based in a
modified Torkkola network and the synthesizing of
the model on a Vixtex-E FPGA board through the
Xilinx software System Generator (Charoensak
and Sattar, 2005).

In 2006, Shyu and Li proposed the implemen-
tation of the FastICA algorithm embedded on a
FPGA board in Hardware Description Language
(HDL), including the implementation of an archi-
tecture that performs floating-point arithmetic in
order to perform accurate calculations (Shyu and
Li, 2006). Though the HDL design may be diffi-
cult, there is a greater control in hardware use.

In (Kuo-Kai Shyu and Lee, 2008), the work
proposed in (Shyu and Li, 2006) was implmented
in a Pipeline architecture, with the purpose of
reaching higher sample rate and clock frequency,
keeping the good results obtained in the previous
work.

This work implements the FastICA in hard-
ware using System-level software DSP Builder.
Our goal is to develop the hardware design, pre-
process the real data of electroencephalogram.
The preprocessed data will be processed in a
FPGA wich contains the systhesized hardware.
This work is part of a higher system for disease

3http://www.cis.hut.fi/projects/ica/fastica/



detection. This system is not the topic of this
work.

This paper is organized as follows: in section
2 we detail the ICA technique by maximization of
nongaussianity. In section 3 we detail the hard-
ware and system-level design. In section 4 we
present the obtained results and in section 5 the
conclusions and future works.

2 Background on ICA Algorithm

Independent Component Analysis is a te-
chinique mainly applied in Blind Source Separa-
tion (BSS) problem and it consists in recovering
source signals from it’s observed mixtures. The re-
lationship between source signals s and observed
mixtures x is given, in matrix notation, as follows:

x = As (1)

where A is a full rank matrix wich is called mixing
matrix.

Under some assumptions, ICA performs the
BSS problem by finding an inverse linear trans-
formation such that maximizes the statistical
independence between the observed mixtures,
which would necessarily correspond to the original
sources (Aapo Hyvärinen, 2001). In practice, ICA
finds an unmixing matrix W ∗ so that y = W ∗x
and ‖ y − s ‖= min.

2.1 Preprocessing in ICA

It is highly recommended that some prepro-
cessing are made before applying the ICA algo-
rithm in order to simplify the estimation of the
sources. The first step in preprocessing is called
Centering and consists in subtracting from each
observed mixture it’s mean.

The second step is called Whitening and con-
sists in linearly transform of the centered observed
mixtures, so that we obtain new vectors which
are white. The components of a whitened vec-
tor are uncorrelated and their variances equals to
unity. This means that the covariance matrix of
whitened data is equal to identity matrix. One
way to perform whitening is using Eigenvalue De-
composition (EVD) method. The whitening ma-
trix is now given by

V = ED−
1
2ET (2)

where E is the orthogonal matrix of eigenvector
calculated from the covariance matrix E{xxT }
and D is the diagonal matrix of the eigenvalues
associated with each eigenvector.

2.2 The FastICA Algorithm

A good and fast algorithm for ICA estima-
tion is the FastICA [(Aapo Hyvärinen, 2001),
(Aapo Hyvärinen, 2000) e (Hyvarinen, 1999)]. It’s

a fixed-point iteration algorithm that, in each iter-
ation, finds a vector w that maximizes the statisti-
cal independence of wT z (Aapo Hyvärinen, 2000).
Based on the Central Limit Theorem, the algo-
rithm maximizes the independence by measuring
the nongaussianity and iteratively maximizing it
until a stop criterion.

A good measure for nongaussianity is called
Negentropy and is defined using the concept of
the diferential entropy (H) of a random variable y
with density py(η), H(y) (Aapo Hyvärinen, 2001),
so that the Negentropy (J), of a random variable
y, is defined as

J(y) = H(ygauss)−H(y) (3)

where ygauss is a random variable with the same
covariance matrix as y but with gaussian distribu-
tion, and H(y) is defined as

H(y) =
∫
f(py(η))dη (4)

Due to it’s computational complexity and
the need to know the probability density func-
tion, negentropy is usually aproximated to more
simple functions by using high-order cumulants.
This gives a good aproximation of negentropy
based on expectations of any nonquadratic func-
tion G and suggests the FastICA iteration as w ←
E{zg(wT z) − E{g′

(wT z)}w} [see (Aapo Hyväri-
nen, 2001)], where g(y) = y3. So, the FastICA
main iteration is given by:

w∗ ← E{z(wtz)3} − 3w (5)

Considering that the data was preprocessed,
the FastICA algorithm for the calculation of one
source is given by

1. Choose an initial weight vector w.

2. w ← E{zg(wT z)} − E{g′(wT z)}w.

3. w ← w

‖ w ‖
.

4. If not converged, back to step 2.

The algorithm needs to be executed once for
each source. In order to prevent that the algo-
rithm estimates the same component more than
one time, the following orthogonalization is made:

w = w −WTWw (6)
w = w/ ‖ w ‖ (7)

where W is the matrix containing the w vectors
previously calculated.

3 Hardware Design

In this section we present the hardware de-
signed to perform the FastICA algorithm. Ba-
sically, the hardware was designed based on the



Figure 1: Hardware for the FastICA main itera-
tion for n = 3.

Figure 2: Hardware of the orthogonalization for
n = 3.

main iteraion and orthogonalization expressions.
The preprocessing steps are performed via soft-
ware, so that the preprocessed data are inserted
in the generated models for the simulations and
therefore the models are synthesized throuhg the
DSP Builder software.

The FastICA main iteration is given in equa-
tion (5). In this work we take n = 3, so the fol-
lowing expression was used in the design of the
hardware:

wi new = (Zi1(Z11w1 + Z21w2 + Z31w3)3 +
Zi2(Z12w1 + Z22w2 + Z32w3)3 + ...+
Zik(Z1kw1 + Z2kw2 + Z3kw3)3)K
−3wi (8)

where i = 1, ..., n, k = is the vector length, Zik

represents the preprocessed data and K = 1/k.
In figure 1 we show the hardware designed for

the main iteration of the FastICA algorithm. A
similar hardware is found in (Shyu and Li, 2006).
In order to complete the main iteration computa-
tion, it is needed to add a simple hardware that
performs the −3wi part of the expression 8.

Whitening guarantees that the independent
components are all in orthogonal spaces, so we
need to perform an orthogonalization step in or-
der to estimate all of the components. This pro-

cess may be achieved through the Gram-Schmidt
method, in expression 7. The hardware for this
step follows the equation 9 and is shown in figure
2.

wi new = wi − (W1i(W11w1 +W12w2 +W13w3)
+W2i(W21w1 +W22w2 +W23w3) +
W3i(W31w1 +W32w2 +W33w3)) (9)

After the orthogonalization step, we take the
norm of the new projetion wi new and the stop
criterion calculation is made. This calculation
consists in observe if the difference between the
new and previous projection is within a tolerance
previously specified (η), ie: wi new − wi ≤ η. As
consequence of one of the ambiguities of the basic
ICA model, the sources can be reversed, so, the
convergence of the algorithm must also take into
account the criterion wi new + wi.

When the stop criterion is reached, the return
of the algorithm is calculated and the process is
repeated for the remaining independent compo-
nents.

3.1 System-level Design

Altera DSP Builder software offers a set of
specific Altera FPGA blocks that can be used in
MATLAB Simulink models for functional simula-
tion of the FPGA hardware design. After the sim-
ulation, it’s possible to automatically generate a
HDL (Hardware Description Language) and syn-
thesize the design on a FPGA platform through
the DSP Builder Signal Compiler block.

In figure 3 we show the DSP Builder design for
the main iteration of the FastICA algorithm and
how to import data from MAT files, which usu-
ally are floating-point signals, into DSP Builder
blocks, casting these signals to fixed-point format.
In this work, the signals are represented using 12
bits for the integer and fractional parts, for a total
of 24 bits.

In figure 4 we show the DSP Builder design
for the orthogonalization process.

Although we show only the DSP Builder de-
signs for the main iteration and orthogonaliza-
tion, the whole design consists in more subsys-
tems. These subsystems were developed to control
all the process. It contains a set of multiplexer,
bus builder, divider, magnitude and other blocks.

4 Results

In this section we show the obtained results
from the experiments made to validate the hard-
ware designed. The experiments were done by
generating MATLAB Simulink models using Al-
tera DSP Builder blocks for the FPGA functional
simulation and synthesis, some signals to test the
hardware and electroencephalogram biological sig-
nals.



Figure 3: System-level design for the FastICA main iteration.

Figure 4: System-level design for the orthogonalization step.



Figure 5: System-level design of the process out-
put using Simulink scope blocks.

Figure 6: Source signals from first experiment.

Figure 5 shows how to use the Simulink scope
block to display the signals generated by the
FPGA platform during the process.

The first application is a computational ex-
periment proposed in (Haykin, 2001). We use
their experiment to test our developed system.
The experiment proposes the estimation of the in-
dependent components using the following source
signals and mixing matrix.

1. u1(k) = 0, 1sen(400k)cos(30k)

2. u2(k) = 0, 01sign(sen((500k) + 9cos(40k)))

3. u3(k) = Uniform distributed noise in the inter-
val [-1, 1]

A =

 0, 56 0, 79 −0, 37
−0, 75 0, 65 0, 86
0, 17 0, 32 −0, 48

 (10)

The source signals and mixtures manually
generated are shown in figures 6 and 7. Fig-
ure 8 shows the independent components obtained

Figure 7: Observed mixtures from the frist exper-
iment.

through our developed system. The system was
able to separete the signals.

In the second experiment, biological elec-
troencephalogram signals given by the Interna-
tional Institute of Neuroscience of Natal Edmond
and Lily Safra - IINN-ELS were used. Those sig-
nals were extracted in experiments where 22 sen-
sors were put on the subject’s scalp to measure
EEG signals, and other 4 sensors measure mus-
cular activity form ocular movement, chin muscle
activity and heart beat, in a total of 26 signals. It
would be necessary a much more bigger hardware
than the one we present here in this work to esti-
mate all of the independent components. To over-
come this, as in (Ricardo Vigário and Oja, 2000),
we made a dimension reduction through the PCA
process. In this experiment, the PCA was per-
formed to decrease the dimension to n = 3.

In figure 9 we have the estimated independent
components from the second experiment. The
first and third components represents EEG signals
and the second represents muscular activity.

5 Conclusions and Future Works

In this work we propose the design, simula-
tion and synthesis of a hardware that performs
the FastICA algorithm, by generating MATLAB
Simulink models and using Altera DSP Builder
software, which offers a set of blocks that can
be synthesized on a FPGA platform, to per-
form the FPGA functional simulation and syn-
thesis on a Altera Cyclone II board of the design.
Through the DSP Builder software we may also
use Simulink scope blocks to display the signals
generated by the FPGA on the process.

While all the signals from the first experiment
were successfully estimated, this is far from being
a real time application. In the second experiment,
though we used real electroencephalogram signals
and three independent components were also suc-
cessfully estimated, it is also an experiment that
can’t be said to be real time.



Figure 8: Independent components estimated
through the hardware design.

Figure 9: Independent components estimated in
the experiment using biological electroencephalo-
gram signals.

As future work, we pursuit the improving of
the design so that it can be used in real time ap-
plications, such as Blind Source Separation in bi-
ological environments for the purpose of healthy
care. Also, this work will integrate a bigger system
implemented in the same FPGA, for the purpose
of disease detection.

References

Aapo Hyvärinen, E. O. (2000). Independent Com-
ponent Analysis: Algorithms and Applica-
tions, Neural Networks.

Aapo Hyvärinen, Juha Karhunen, E. O. (2001).
Independent Component Analysis, John Wil-
ley & Sons Inc.

Anis Nordin, C. H. and Szu, H. (2001). Desing
of FPGA ICA for hyperspectral imaging pro-
cessing, Proc. SPIE Signal Image Process,
vol. 4391, pp. 444-454.

Charoensak, C. and Sattar, F. (2005). Design
of Low-Cost FPGA Hardware for Real-time
ICA-Based Blind Source Separation Algo-
rithm, EURASIP Journal on Applied Signal
Processing 18:3076-3086.

Du, H. and Qi, H. (2004). An FPGA implementa-
tion of parallel ICA for dimensionality reduc-
tion in hyperspectral images, IEEE Proceed-
ings, vol. 5, pp. 3257-3260.

Haykin, S. (2001). Redes Neurais: Prinćıpios e
Prática, Bookman.

Hyvarinen, A. (1999). Fast and robust fixed-point
algorithm for independent component analy-
sis, IEEE Transactions on Neural Networks,
10.

Kuo-Kai Shyu, Ming-Huan Lee, Y.-T. W. and Lee,
P.-L. (2008). Implementation of Pipelined
FastICA on FPGA for Real-Time Blind
Source Separation, IEEE Trans., vol. 19, no.
6.

Ricardo Vigário, Jaakko Särelä, V. J. M. H. and
Oja, E. (2000). Independent Component Ap-
proach to the Analysis of EEG and MEG
Recordings, IEEE Trans., vol. 47, no. 5.

Shyu, K.-K. and Li, M.-H. (2006). FPGA Im-
plementation of FastICA based on Floating-
Point Arithmetic Design for Real-Time Blind
Source Separation, Int. Joint Conf. on Neural
Networks.


