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ABSTRACT 
 
The Reed-Solomon error correction code is widely used 
in digital telecommunication systems, including satellite 
communications and data recording systems such as CD 
and DVD. This article presents an implementation for the 
encoder and the decoder of optical communication 
systems, according to the ITU-T G.709 standard. It 
presents an approach that multiplexes the traditional 
decoder blocks. The implementation promotes an 
expressive area reduction in an FPGA. It also presents the 
circuit implementation in a Virtex 5 FPGA, using 
software Xilinx ISE 10.1 tools. 
 
Keywords: Reed-Solomon, FPGA, FEC, RS Encoding, 
RS Decoding 
 
 

1. INTRODUCTION 
 
The error correction codes, also known as Forward Error 
Correction – FEC codes, allow the recovery of a certain 
amount of error during data transmission without having 
to resend the data itself, thus increasing the system 
transmission capacity [1 – 3]. The high transmission rate 
communication systems need high performance and low 
cost hardware implementations of error correction codes. 
The block code, one of the FEC code, adds a constant 
size redundancy and it is capable of correcting multiple 
errors[4]. 

Among other advantages, the error correction codes 
provide larger communication links, power gain and 
inter-channel interference correction. These advantages 
can be translated into fewer repeaters in the system, thus 
reducing its final price [4]. On the other hand, the system 
requires some processing capability [4]. 

The ITU-T G.709 optical communications standard [5] 
recommends the use of Reed-Solomon code RS 
(255,239), which is implemented and discussed in this 
article. 

 
2. REED-SOLOMON 

 
Reed-Solomon is a non-linear and non-binary cyclic 
block code, where the symbols are formed by sequences 

of m-bits [6]. The code is identified as RS (n,k), where n 
is the total number of symbols in a frame and k is the 
number of data symbols, as shown in Figure 1 [1,6,7]. 

 
 

Figure 1 – Structure of a RS(n,k) code. 
 

The Reed-Solomon code is capable of correcting t errors, 
where t is given by expression (1) [3, 6]. 
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The RS code based system has an encoder and a decoder 
as indicated in Figure 2 [2, 3]. The data provided by the 
Source receives the additional check bits (n-k) at the RS 
Encoder. At the receiver, the data is decoded and up to t 
errors can be corrected. Those errors may occur during 
the transmission. 

 

 
Figure 2 – Data transmission system. 

 
The Reed-Solomon was developed based on abstract 
algebra and uses finite Field theory, known as Galois 
Field (after the French mathematician Évariste Galois). 
The necessary finite Field theory required for the Reed-
Solomon is presented in [1, 3, 8]. The Galois Fields are 
implemented according to a primitive polynomial.  The 
primitive polynomial for the RS (255,239), established by 
the G.709 standard [5], is given by expression (2). 
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The polynomial must be primitive, so that all of its roots 
are primitive elements, represents as powers of α. It 
means that all field elements can be represented by using 
powers of α, ranging from 1 to the number elements of 
the field minus 1 [8]. The complete field elements can be 
found in [4]. 

 



Encoder 

The data is systematically coded. It is first sent the 
original data, followed by the parity symbols, which are 
calculated according to the polynomial generator. It is 
used a “2t step” polynomial generator, given by 
expression (3) [1, 3, 7].  
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where b is a random number. It must be carefully chosen 
to avoid increasing the system complexity. The G.709 
standard [5] takes b as 0. 
 
Decoder 

The decoder is comprised of 4 blocks: Syndrome 
Calculator, Key Equation Solver, Error Locator and Error 
Evaluator, as indicated in Figure 3 [9]. 

 

 
Figure 3 – The Reed-Solomon decoder. 

 
The Syndrome Calculator is the first block. It monitors 
the arriving data to evaluate if data correction processing 
is necessary. It verifies if an error occurred during the 
transmission by obtaining all the polynomial roots 
throughout the data. If the number of errors is smaller 
than or equal to t, then the syndrome is delivered to the 
next block, the Key Equation Solver. If the number of 
errors is larger than t, an error signal is generated to 
indicate that no correction is possible. Finally, if no errors 
are found, the data is delivered without any further 
processing, besides removing the parity symbols [10]. 

There are two possible algorithm options for the Key 
Equation Solver: the Euclidian and the Berlekam-Massey. 
The Euclidian algorithm is simpler to implement but 
requires more FPGA area due to the larger complexity of 
the finite field equation divider. The Berlekamp-Massey 
algorithm is more complex, but takes less hardware [7]. 

The Error Locater finds the error locations using the 
Chien Search algorithm. It also determines the error 
magnitude to be added to those locations in order to 
correct the symbol [7]. 

 
3. IMPLEMENTATION 

 
The Reed-Solomon (255,239) was implemented using 
VHDL hardware description language, which offers high 
abstraction level during the implementation [11]. The 
VHDL description was simulated and implemented in a 
XC5VFX70T Virtex 5 FPGA. 

 
 
 

Encoder 

As previously described, the polynomial generator can be 
obtained by expression (3), where i is zero, according to 
the G.709 standard [5]. The obtained polynomial 
generator is given by expression (4). 

A Linear Feedback Shift Register was used to implement 
the polynomial generator, as shown in Figure 4 [12]. 
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Figure 4 – Reed-Solomon encoder. 

 
An eight bits bus interconnects the byte size registers, and 
the adder and multiplier finite filed arithmetic circuits. 
The adding circuit is implemented by using bit to bit 
XOR logic. The multiplication is a combination of AND 
and XOR gates, as described by [13]. 

An example of VHDL multiplication is shown in Figure 5. 
The multiplication is implemented as a function since it 
will be also used in other blocks. 

 

 
Figure 5 – Multiplication implemented in VHDL. 
 

The example shows the multiplication of a Galois field 
element (represented by bb) by the constant element α225. 
The AND logic does not appear in the listing due to the 
circuit simplification. An AND 0 operation results 0 and 
therefore is eliminated. An AND 1 operation is 
represented by the element itself. Therefore, the number 
of logic gates used to implement an operation depends on 
the operands. The same operation occurs both at the 
transmitter and the receiver. 

The encoding of line in the OTN frame requires 16 Reed-
Solomon encoders. Each line contains 3824 symbols that 
are supplied by the “interleaver” in a multiplexed fashion 
in 16 sets of 239 symbols each [5]. The symbols are 
transmitted in an interleaved fashion, as indicated in 
Figure 6. 



 
Figure 6 – OTN transmission structure. 

 
The interleaving is used to minimize the chances of burst 
errors compromising the communication. In the event of 
burst errors, the error will not be concentrated in one line, 
but will be distributed over the lines, and thus increasing 
the probability of correcting the error. The OTN line 
encoding structure is shown in Figure 6. 

 

 
Figure 7 – Structure of an RS OTN encoder. 

 
As indicated in Figure 7, the encoder receives 3,824 
symbols. It adds the parity symbols and outputs 4,080 
symbols, which corresponds to line 1 of an OTN frame. 

The VHDL description was implemented in a 
XC5VFX70T Virtex 5 FPGA using the Xilinx ISE 
version 10.1. Table 1 summarizes the logic utilization. 

 
TABLE 1 – ENCODING LOGIC UTILIZATION. 

 

Blocks Amount Used 

Combinational ALUT 2,592 

Dedicated Logic Registers 2,320 

Block Memory 0 
 

As can be observed, the FPGA does not require a large 
area. 

 
Decoder 

The decoder receives 4,080 symbols sequentially, 
corresponding to an OTN frame line. The 4,080 symbols, 
corresponding to 16 channels, are delivered one byte at a 
time, as previously shown in Figure 6. 

 
 

Figure 8 – Decoding timing diagram. 
 

Since the system runs at 166 MHz and two symbols 
arrive at each 8 clock cycles, the FIFO indicated in Figure 
3 takes 12 µs to load one frame line. The implemented 
decoder takes a maximum of 10 µs to process the error 
correction. The timing diagram in Figure 8 represents that 
situation. 

From the analysis of the timing diagram of Figure 8, it 
can be observed that a single set of 16 decoders would 
not be enough to implement the system. The decoder can 
start its operation only after the FIFO is completely 
loaded. Therefore, while it processes one line, the other 
line is being transmitted and consequently must be stored. 
Another set of 16 decoders is necessary for the second 
line, requiring a large FPGA area. 

The proposed solution in this work is the duplication of 
the Syndrome and the FIFO blocks, while maintaining a 
single set of the other blocks, as indicated in Figure 9. 

 

 
Figure 9 – Modified RS decoder. 

 
Initially, each line passes through a Syndrome Calculator 
and them it is loaded into a FIFO memory. If necessary, 
each line is processed by the Belerkamp-Massey, Error 
Locator and Error Evaluator blocks. Wile the line is being 
processed, the other memory is loading another incoming 
line, as can be observed by the timing diagram in Figure 
10. 

 
 

Figure 10 – Modified decoding timing diagram. 
 
According to the timing diagram, there is a 2 µs safety 
margin on the system operation. 

The proposed decoding architecture saves 16 Berlekamp-
Massey blocks, 16 Error Locator and 16 Error Evaluator 
blocks. These blocks require large FPGA area, as shown 
by the summary presented in Table 1. 

 
 
 
 
 
 



TABLE 2 – DECODING COMPARISON. 

Blocks Total Available 32 RS 16 RS 

LTUs 44,800 18,383 12,270 

Registers 44,800 35,144 23,991 

Block Memory 148 16 16 

Response Time - 5 ns 5.1 ns 
 
As can be observed, the proposed decoding architecture 
saves FPGA area. The number of registers is reduced by 
14% and the number of look-up tables is reduced by 25%, 
while delay is increased by just 0.1 ns (increase of 2%) 
due to the inclusion of a multiplexer. The delay is 
acceptable, considering that a clock cycle at 166MHz 
requires 6 ns. Therefore, the OTN frame decoding 
requires just 16 RS decoders instead of 32. 

As can be observed from the decoding structure of Figure 
11, the 4080 symbols are decoded by 16 RS (255,239) 
decoders that produce 3,824 symbols, which correspond 
to an OTN frame line without the parity symbols. 
 

 
Figure 11 – OTN decoding structure. 

 
 

4. CONCLUSIONS 
 

This article presented a new Reed-Solomon decoding 
structure that can save a lot of FPGA area. The saved area 
represents a cost reduction for the system since a smaller 
and cheaper FPGA can be used. 
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