
FPGA Implementation of a Reed-Solomon CODEC for OTN G.709 Standard with
Reduced Decoder Area

Tiago C. BARBOSA, Robson L. MORENO, Tales C. PIMENTA and Luis H. C. FERREIRA
Universidade Federal de Itajubá – UNIFEI

Av. BPS, 1303
Itajubá MG 37500-903 Brazil

ABSTRACT

The Reed-Solomon error correction code is widely used
in digital telecommunication systems, including satellite
communications and data recording systems such as CD
and DVD. This article presents an implementation for the
encoder and the decoder of optical communication
systems, according to the ITU-T G.709 standard. It
presents an approach that multiplexes the traditional
decoder blocks. The implementation promotes an
expressive area reduction in an FPGA. It also presents the
circuit implementation in a Virtex 5 FPGA, using
software Xilinx ISE 10.1 tools.

Keywords: Reed-Solomon, FPGA, FEC, RS Encoding,
RS Decoding

1. INTRODUCTION

The error correction codes, also known as Forward Error
Correction – FEC codes, allow the recovery of a certain
amount of error during data transmission without having
to resend the data itself, thus increasing the system
transmission capacity [1 – 3]. The high transmission rate
communication systems need high performance and low
cost hardware implementations of error correction codes.
The block code, one of the FEC code, adds a constant
size redundancy and it is capable of correcting multiple
errors[4].

Among other advantages, the error correction codes
provide larger communication links, power gain and
inter-channel interference correction. These advantages
can be translated into fewer repeaters in the system, thus
reducing its final price [4]. On the other hand, the system
requires some processing capability [4].

The ITU-T G.709 optical communications standard [5]
recommends the use of Reed-Solomon code RS
(255,239), which is implemented and discussed in this
article.

2. REED-SOLOMON

Reed-Solomon is a non-linear and non-binary cyclic
block code, where the symbols are formed by sequences

of m-bits [6]. The code is identified as RS (n,k), where n
is the total number of symbols in a frame and k is the
number of data symbols, as shown in Figure 1 [1,6,7].

Figure 1 – Structure of a RS(n,k) code.

The Reed-Solomon code is capable of correcting t errors,
where t is given by expression (1) [3, 6].

2
knt −

= (1)

The RS code based system has an encoder and a decoder
as indicated in Figure 2 [2, 3]. The data provided by the
Source receives the additional check bits (n-k) at the RS
Encoder. At the receiver, the data is decoded and up to t
errors can be corrected. Those errors may occur during
the transmission.

Figure 2 – Data transmission system.

The Reed-Solomon was developed based on abstract
algebra and uses finite Field theory, known as Galois
Field (after the French mathematician Évariste Galois).
The necessary finite Field theory required for the Reed-
Solomon is presented in [1, 3, 8]. The Galois Fields are
implemented according to a primitive polynomial. The
primitive polynomial for the RS (255,239), established by
the G.709 standard [5], is given by expression (2).

1)(2348 ++++= XXXXXP (2)

The polynomial must be primitive, so that all of its roots
are primitive elements, represents as powers of α. It
means that all field elements can be represented by using
powers of α, ranging from 1 to the number elements of
the field minus 1 [8]. The complete field elements can be
found in [4].

Encoder

The data is systematically coded. It is first sent the
original data, followed by the parity symbols, which are
calculated according to the polynomial generator. It is
used a “2t step” polynomial generator, given by
expression (3) [1, 3, 7].

∏
−+

=

+=
12

)()(
tb

bi

ixXg α (3)

where b is a random number. It must be carefully chosen
to avoid increasing the system complexity. The G.709
standard [5] takes b as 0.

Decoder

The decoder is comprised of 4 blocks: Syndrome
Calculator, Key Equation Solver, Error Locator and Error
Evaluator, as indicated in Figure 3 [9].

Figure 3 – The Reed-Solomon decoder.

The Syndrome Calculator is the first block. It monitors
the arriving data to evaluate if data correction processing
is necessary. It verifies if an error occurred during the
transmission by obtaining all the polynomial roots
throughout the data. If the number of errors is smaller
than or equal to t, then the syndrome is delivered to the
next block, the Key Equation Solver. If the number of
errors is larger than t, an error signal is generated to
indicate that no correction is possible. Finally, if no errors
are found, the data is delivered without any further
processing, besides removing the parity symbols [10].

There are two possible algorithm options for the Key
Equation Solver: the Euclidian and the Berlekam-Massey.
The Euclidian algorithm is simpler to implement but
requires more FPGA area due to the larger complexity of
the finite field equation divider. The Berlekamp-Massey
algorithm is more complex, but takes less hardware [7].

The Error Locater finds the error locations using the
Chien Search algorithm. It also determines the error
magnitude to be added to those locations in order to
correct the symbol [7].

3. IMPLEMENTATION

The Reed-Solomon (255,239) was implemented using
VHDL hardware description language, which offers high
abstraction level during the implementation [11]. The
VHDL description was simulated and implemented in a
XC5VFX70T Virtex 5 FPGA.

Encoder

As previously described, the polynomial generator can be
obtained by expression (3), where i is zero, according to
the G.709 standard [5]. The obtained polynomial
generator is given by expression (4).

A Linear Feedback Shift Register was used to implement
the polynomial generator, as shown in Figure 4 [12].

3936509822941651638
30209681891041359)(

2345678

910111213141516

++++++++

++++++++=

XXXXXXXX
XXXXXXXXXg

(4)

Figure 4 – Reed-Solomon encoder.

An eight bits bus interconnects the byte size registers, and
the adder and multiplier finite filed arithmetic circuits.
The adding circuit is implemented by using bit to bit
XOR logic. The multiplication is a combination of AND
and XOR gates, as described by [13].

An example of VHDL multiplication is shown in Figure 5.
The multiplication is implemented as a function since it
will be also used in other blocks.

Figure 5 – Multiplication implemented in VHDL.

The example shows the multiplication of a Galois field
element (represented by bb) by the constant element α225.
The AND logic does not appear in the listing due to the
circuit simplification. An AND 0 operation results 0 and
therefore is eliminated. An AND 1 operation is
represented by the element itself. Therefore, the number
of logic gates used to implement an operation depends on
the operands. The same operation occurs both at the
transmitter and the receiver.

The encoding of line in the OTN frame requires 16 Reed-
Solomon encoders. Each line contains 3824 symbols that
are supplied by the “interleaver” in a multiplexed fashion
in 16 sets of 239 symbols each [5]. The symbols are
transmitted in an interleaved fashion, as indicated in
Figure 6.

Figure 6 – OTN transmission structure.

The interleaving is used to minimize the chances of burst
errors compromising the communication. In the event of
burst errors, the error will not be concentrated in one line,
but will be distributed over the lines, and thus increasing
the probability of correcting the error. The OTN line
encoding structure is shown in Figure 6.

Figure 7 – Structure of an RS OTN encoder.

As indicated in Figure 7, the encoder receives 3,824
symbols. It adds the parity symbols and outputs 4,080
symbols, which corresponds to line 1 of an OTN frame.

The VHDL description was implemented in a
XC5VFX70T Virtex 5 FPGA using the Xilinx ISE
version 10.1. Table 1 summarizes the logic utilization.

TABLE 1 – ENCODING LOGIC UTILIZATION.

Blocks Amount Used

Combinational ALUT 2,592

Dedicated Logic Registers 2,320

Block Memory 0

As can be observed, the FPGA does not require a large
area.

Decoder

The decoder receives 4,080 symbols sequentially,
corresponding to an OTN frame line. The 4,080 symbols,
corresponding to 16 channels, are delivered one byte at a
time, as previously shown in Figure 6.

Figure 8 – Decoding timing diagram.

Since the system runs at 166 MHz and two symbols
arrive at each 8 clock cycles, the FIFO indicated in Figure
3 takes 12 µs to load one frame line. The implemented
decoder takes a maximum of 10 µs to process the error
correction. The timing diagram in Figure 8 represents that
situation.

From the analysis of the timing diagram of Figure 8, it
can be observed that a single set of 16 decoders would
not be enough to implement the system. The decoder can
start its operation only after the FIFO is completely
loaded. Therefore, while it processes one line, the other
line is being transmitted and consequently must be stored.
Another set of 16 decoders is necessary for the second
line, requiring a large FPGA area.

The proposed solution in this work is the duplication of
the Syndrome and the FIFO blocks, while maintaining a
single set of the other blocks, as indicated in Figure 9.

Figure 9 – Modified RS decoder.

Initially, each line passes through a Syndrome Calculator
and them it is loaded into a FIFO memory. If necessary,
each line is processed by the Belerkamp-Massey, Error
Locator and Error Evaluator blocks. Wile the line is being
processed, the other memory is loading another incoming
line, as can be observed by the timing diagram in Figure
10.

Figure 10 – Modified decoding timing diagram.

According to the timing diagram, there is a 2 µs safety
margin on the system operation.

The proposed decoding architecture saves 16 Berlekamp-
Massey blocks, 16 Error Locator and 16 Error Evaluator
blocks. These blocks require large FPGA area, as shown
by the summary presented in Table 1.

TABLE 2 – DECODING COMPARISON.

Blocks Total Available 32 RS 16 RS

LTUs 44,800 18,383 12,270

Registers 44,800 35,144 23,991

Block Memory 148 16 16

Response Time - 5 ns 5.1 ns

As can be observed, the proposed decoding architecture
saves FPGA area. The number of registers is reduced by
14% and the number of look-up tables is reduced by 25%,
while delay is increased by just 0.1 ns (increase of 2%)
due to the inclusion of a multiplexer. The delay is
acceptable, considering that a clock cycle at 166MHz
requires 6 ns. Therefore, the OTN frame decoding
requires just 16 RS decoders instead of 32.

As can be observed from the decoding structure of Figure
11, the 4080 symbols are decoded by 16 RS (255,239)
decoders that produce 3,824 symbols, which correspond
to an OTN frame line without the parity symbols.

Figure 11 – OTN decoding structure.

4. CONCLUSIONS

This article presented a new Reed-Solomon decoding
structure that can save a lot of FPGA area. The saved area
represents a cost reduction for the system since a smaller
and cheaper FPGA can be used.

5. ACKNOWLEDGMENTS

The authors would like to thank the Microelectronics
Group at Universidade Federal de Itajubá.

6. REFERENCES

1. R. H. Morelos-Zaragoza, The Art of Error Correcting Coding, p. 1,
74, John Wiley & Sons Ltd, Chichester (2006).

2. A. Betten, Error-Correcting Linear Codes: Classification by
Isometric and Applications, p. 7, 4, Springer, Berlin (2006).

3. J. C. Moreira and P. G. Farrell, Essentials of Error-Control
Coding, p. 2, 166, 3, 166 , John Wiley & Sons Ltd, Chichester
(2006).

4. M. A. Ingale, Error Correcting Codes in Optical Communication
Systems, Gothenburg (2003).

5. ITU-T G.709/Y.1331, Interfaces for Optical Transport Network
(OTN), (2001).

6. B. Sklar. Reed-Solomon Codes, (2001).
7. K. C. C. Wai and S. J. Yang, Field Programmable Gate Array

Implementation of Reed-Solomon Code, RS(255,239), New York
(2006).

8. A. Ferreira, Aplicação da Teoria dos Campos de Galois na
Codificação de Canal, Lisboa (1999).

9. M. Song, S. Kuo, I. Lan, in Consumer Electronics, IEEE
Transactions, p. 265-273, A Low Complexity Design of Reed
Solomon Code Algorithm for Advanced RAID System, Rosemont,
IL (2007).

10. T. Le-Ngoct, M. T. Vot, B. Mallettt and V. K. Bhargava, in
Military Communications Conference, 1990. MILCOM '90,
Conference Record, A New Era/1990, p. 121-125, A gate-array-
based programmable Reed-Solomon codec:structure-
implementation-applications, Monterey, CA (1990).

11. S. Smith, M. Benaissa and D. Taylor, in VHDL (Very High Speed
Integrated Circuits Hardware Description Language) -
Applications and CAE Advances/1993, High Level Synthesis of an
(N,K) Reed-Solomon Encoder Using VHDL, London (1993).

12. J. Koeter, What is an LFSR?, Texas Instruments Incorporated,
Dallas (1990).

13. A. Halbutogullari and Ç. K. Koç, in IEEE Transactions on
Computers/2000, p. 503-518, Mastrovito Multipler for General
Irreducible Polynomials, Corvallis (2000).

