

PADT: SSAD-Streamlined and Component-Based Development

Perspective, Activity, and Documentation Transitioning Approach

Sheldon X Liang
Department of Computer Science, Azusa Pacific University

701 E Alosta Ave., Azusa, CA 91702

and

Samuel Sambasivam
Department of Computer Science, Azusa Pacific University

701 E Alosta Ave., Azusa, CA 91702

ABSTRACT

CBSE (Component-Based Software Engineering) claims to

offer a radically new approach to the design, construction,

implementation and evolution of software applications.

However because of unclear and ambiguous requirements, it is

very difficult hence to design and build components

successfully. To the contrary, SSAD (Structured Systems

Analysis and Design) is considered a pragmatic Requirements

Engineering method that can be well documented and educated,

therefore represents a pinnacle of the rigorous documentation-

driven approach.

After years of research on software architecture and teaching

Capstone Project through SSAD, the authors have realized that

there has existed the gap between many aspects throughout

SDLC (System Development Life Cycle). This paper presents

the PADT framework that provides software engineering with a

new transitioning view, and that accommodates multi-systems

perspective, developmental activity, and deliverable

documentation in support of streamlining SSAD through to

CBSE.

1. INTRODUCTION

CBSE (Component-Based Software Engineering) offers a

radically new approach to the design, construction,

implementation and evolution of software applications. The

modular structure of a CBSE solution allows individual

components to be replaced easily at design time or run time, i.e.

if a software application is assembled from components, it is

easier to reconfigure the components to support desired changes

in the business process. CBSE views the system as a set of off-

the-shelf components integrated within an appropriate

architecture [1,2,3]. However, there is no evidence that

components are more natural to think than functionality

especially when an information system is under development

from scratch. So with unclear and ambiguous requirements, it

would be difficult to design and build components successfully.

1.1. Why Structured Systems Analysis?

SSAD (Structured Systems Analysis and Design) is a

straightforward and pragmatic Requirements Engineering

method that can be well documented and educated [3, 5],

despite both supporting arguments and criticisms on the

waterfall model. SSAD has an important feature that

stakeholders are intensively involved in the requirements

analysis stages and usually required to approve the deliverables

at all stages as they are completed to ensure the system meets

their needs. Currently, SSAD represents the pinnacle of a

rigorous documentation-driven approach, which plays a great

role in software engineering education. SSAD provide working

design documentation to help team members understand each

other.

After years of educating Capstone Project through SSAD [6],

the deliverables for stand-alone software projects have been

well-developed and standardized at Azusa Pacific University,

such as PRD (problem requirements document), PSD (project

specification document), and SDD (software design document).

With the standardized documentation, engineering software has

become traceable, teachable, and team-workable.

1.2. Why Systems Perspective Transitioning?

Software projects involve different types of people who see the

system from heir own perspective through SDLC. Along with

the waterfall model, SSAD promotes pragmatic Requirements

Engineering approach at the analysis stage, but discourages

frequent changing of requirements at the later development

stage [8,9]. CBSE uses the modular structure solution to

achieve individual components to be replaced with ease at

design time or run time [1, 2,3].

Actually, SSAD and CBSE complement each other because

SSAD focuses on the Analysis and Design stages of SDLC,

while CBSE stresses modular structures that enable components

substitution. The transitioning from SSAD to CBSE itself

reflects a shift in the focus from a conceptual perspective

(requirements) to a technical implementation.

1.3. Previous Work and Contribution

After years of architecting reliable architectures for software-

intensive distributed systems [10, 11, 12, 13, 14, 15,16], cohort-

educating Capstone Project at Azusa Pacific University [6], the

authors understood that software architecture plays a crucial

role in bridging the gap between system requirements and

implementation [7,8]. Besides the conceptual requirements, and

the operational implementation, the technical architecture is

used to force the architect or architecture team to consider the

key design aspects early and across the whole system. One of

the most recent accomplishments is an architectural description

language (re-ADA) that supports to generate the prototype into

the intended product system [11,12].

We have expected all products executable across stages to

involve stakeholders to review and revise the documentation

[10,17] via documentation-driven approach [11,15] in order to

automate engineering software. This paper aims to bridge the

gap between SSAD and CBSE via systems perspective

transitioning to make full use of the combined advantages –

effectiveness of acquiring requirements at early stages, and of

adjusting requirements at later stages.

The main contribution is the PADT framework that provides

software engineering with a new transitioning view. The

traditional layered technology view [9] stresses the supportive

across borders between layered technologies, instead, the PADT

transitioning effects the transitioning from perspective to

perspective via automated developmental activities/tools. The

specific contribution is the bridge between SSAD and CBSE via

the descriptive architecture in re-ADA. Another important

contribution to software engineering is the fulfillment of

products executable throughout SDLC – as the systems

perspective proceeds in transitioning, multi-staged products

(from the prototype, through the midway products, to the

complete product).

2. TRANSITIONING VIEW

Software engineering emphasizes quality by integrating multi-

technologies into the subject in a well-layered way, including

tools, methods, process models, and at last, a “quality focus”[9].

From an educator’s and a software engineer’s perspective, a

breakthrough is made among those layers through systems

perspective, developmental activity, and deliverable

documentation transitioning approach.

Three systems perspective is incorporated into the PADT

framework reflect different concerns of the stakeholders [4,7,8].

The conceptual system is introduced to address “What-To-Do”

showing the functional view of the system whose major focus is

about functional requirements and constraints, the technical

system to specify “How-To-Do” showing a structural view of

the system with the interior structure “exploded”, and the

operational system to fulfill “Way-To-Go” with all functional

requirements and constraints implemented within a complete

system.

A set of development activity is associated with major aspects

of PADT framework including systems perspective, such as

require / define (by the customer / analyst) the conceptual

system, design / review (by the designer / maintainer) the

technical system, and develop / run (by the programmer /

operator) the operational system.

A set of documentation has been successfully integrated in the

PADT framework, as part of software engineering education

curriculum at Azusa Pacific University. Capstone Project [6],

on the basis Adaptable Process Model [18] consists of the

following standardized documents:

• PRD: Project Requirements Document;

• PSD: Project Specification Document;

• SPMP: Software Project Management Plan;

• SDD: Software Design Document;

• ATP: Acceptance Testing Plan;

• SOM: Software Operator’s Manual;

• WDSC: Well-Documented Source Code

The perspective transitioning from SSAD to CBS itself reflects

a shift of focus on from the conceptual requirements, through

technical architecture, to operational implementation.

(a) PADT transitioning from SSAD to CBSE

Distinguishable
 Transitional
 Supplemental
 PRD
 PSD
 SPMP
 SDD
 SOM
 ATP
WDSC

(b) Document deliverables

Figure 1. Perspective Transitioning Deliverable Evolution

Figure. 1(a) illustrates the perspective transitioning view in

support of engineering software via documentation-driven

perspective transitioning throughout SDLC: PADT pursues to

streamline SSAD through to CBSE in order to make full use of

the combined advantages – effectiveness of acquiring

requirements (with SSAD at early stages) and effectiveness of

adjusting requirements (with CBSE at later stages).

3. TRANSITIONING PROCESS

To engineer software systems is the process of manufacturing

software systems, intended to try the best-practice processes to

create and/or maintain software. A software system consists of

executable computer code and the supporting documents needed

to manufacture, use, and maintain the code [19].

3.1 Engineering Documentation-Driven Process

According to the PADT transitioning view, there exist gaps to

be bridged between different methodologies – SSAD and

CBSE, deliverable documents – requirements and specification,

etc, all which leads to systems perspective transitioning issue:

How to evolve a product system from a prototype?

Documentation-driven approach will do the trick in support of

perspective transitioning while engineering software systems.

Documentation or documenting everything plays a crucial role

in engineering software systems, so the question “must

everything be documented?” has an unequivocal answer “YES”

[21]. The software development process (SDLC) itself is

usually divided into phases whose ordering, and the interactions

between the phases specify a software life-cycle model that

refers to developmental activities, such as requirements

analysis, design, implementation, and maintenance. And all the

result from the activities should be documented. The process by

its definition [22] reflects the sequence of interdependent and

linked procedures that (at every stage) consume one or more

resources to convert inputs into outputs -- in particular, the

output of each phase serves as the input to the next [23].

3.2 Deliverable Evolution

Starting with requirements analysis, SSAD has much to be

documented, such as structured analysis diagram, HIPO, flow

chart, data dictionaries, program comments etc. Based on three

systems perspective in PADT, deliverable evolution from

document to document not only keeps track of the key content

that dominantly characterizes the systems perspective, but also

reflects focus shifting against different systems perspective.

That is, the key conent evolves or expands to the extent that

new document can be derived.

Figure. 1 (b) also illustrates the deliverable evolution through

Capstone Project with a set of documentation well standardized

as follows:

- Three distinguishable documents as major deliverables for

three systems perspective;

- Two transitional documents for transitioning across systems

perspective;

- Two supplemental documents in support of management and

test plan.

Table 1. Perspective, Activity and Documentation

associated with Tools

With three systems perspective, PRD is used to define the

conceptual system with the emphasis on functionality

(behavior), SDD design the technical system on structure

(organization), and WDSC develop the operational system on

functional procedures and constraints within a complete system.

With regard to two transitional documents, PSD refines PRD

into the extent that SDD can start to add design details; SOM

describes functional procedures under certain constraints so that

WDSC can start to implement procedures in a certain

programming language.

SPMP is used to plan the software project in terms of

management including scheduling, cost control and budget

management, resource allocation, collaboration software,

communication, quality management and documentation or

administration systems. And ATP in software engineering is

black box testing performed on a system prior to its delivery.

3.3 Perspective Transitioning via Development Tools

SSAD provides an analysis and design framework or set of

development tools that can be adopted by people with sufficient

experience and expertise. So tools are applied to analysis and

design in accordance with deliverable evolution associated with

Perspective, Activity and Documentation

Table 1 highlights tools in support of perspective transitioning

process from document to document. For instance, the

deliverable evolution from PRD, through PSD, to SDD refers to

system context diagram, high-level DFD, top-level architecture,

and architectural design.

4. PERSPECTIVE TRANSITIONING

With the aim of automating the systems perspective

transitioning (as shown in Fig. 1), PADT takes substantial

action to convert the interior structure (represented by high-

level DFD) into top-level architecture via substitutable

interoperation with re-ADA [11,12]. This is a crucial step

moving toward CBSE with software architecture constructed.

Substitutable interoperation is an interoperable architecture

under which all the components (decomposed by high-level

DFD and hierarchical-level DFD) are substitutable in the first

place, and secondly the component substitution is fulfilled by

extending a new component to substitute the old one.

Substitutability and extensibility [24,25] of components play

important role in support of CBSE.

Figure 2. CBD via Substitutable Interoperation

4.1 re-ADA Streamlining SSAD through to CBSE

The software architecture is a structural plan that describes the

elements of the system in how they work together to fulfill the

system’s requirements [17]. The central to PADT framework in

support of streamlining SSAD through to CBSE is the reliable

Ada-based Descriptive Architecture Language (re-ADA) that

introduces software architecture to software design.

Fig. 2 illustrates that substitutable interoperation plays an

important ole in bridging the gap between SSAD and CBSE. 1st

level DFD represents the interior structure, and this can be

architected by the substitutable interoperation in re-ADA. Based

on this, SDD and CBD (component-based development) are

introduced with the emphasis on technical system (a structural

view), a shift from the conceptual system (a functional view).

With this, all the components are made within the architecture

extensible so that the design result of SSAD is easily transferred

to that of CBSE. So the dominating methodology (CBSE) is

naturally introduced to make the technical system substantial to

accommodate extensible components [12] for operational

system.

4.2 DFD-regulated Perspective Transitioning

Substitutable interoperation represents the ability of systems to

provide interoperable services to and from the distributed and

collaborative components. With high-level DFDs developed

through SSAD, we have to consider the possibility that there are

diverse types of data flow that is attached to service processes.

To regulate DFD is to use substitutable interoperation

mechanism to support diverse data flow communication

between components.

Figure 3. DFD-regulated Architecture via Substitutable Interoperation

The Automatic Teller System (ATS) is presented as a case

study that provides the customers of a financial institution

with access to financial transactions in a public space without

the need for a human clerk or bank teller [26]. The simplified

ATS is stated as follows:

• Project Requirements Documents (PRD) is to define the

conceptual system with emphasis on 0th level DFD, based

on which the prototype can be developed.

• Project Specification Document (PSD) is to refine the

conceptual system with emphasis on the interior structure

(1st level DFD), the extended version of conceptual

system toward technical system .

• Software Design Document (SDD) is to design the

technical system with emphasis on substitutable

interoperation among components that constructs the

architecture for operational system.

• Well Documented Source Code (WDSC) is written in re-

ADA and runtime foundation with emphasis on

interoperable components and synthetic collaboration.

Figure 3 illustrates document-driven perspective transitioning

from PRD (0th level DFD) to PSD (1th level DFD). The

interior structure is derived from the monolithic process

(component) including and introducing following issues in

analysis and design:

• System Architecture for interior structure (the highlighted

part) derived from 0th level DFD

• Subsystem Overview for the decomposed components

• Structure Chart for organizing multiple components

• Data model via Entity-Relationship Diagram

(a) (b) (c)

Figure. 4. Architectural Framework for ATS (1st DFD)

• Architecture

• Subsystems

• Structure chart

• Data model (ERD)

• … …

 Figure 4 illustrates the application of substitutable

interoperation in support of architecting the interior structure

to a top-level architecture. After hiring substitutable

interoperation mechanism, all the external devices, and

interior components can be interconnected, with the support

of re-ADA runtime foundation a prototype is therefore built

to be able to execute. There are three types of substitutable

interoperation are hired to architect interior structure: (a)

pipeline, (b) client-server, and (c) event-driven mechanism,

which regulates the interior structure (Fig. 3) into top-level

architecture (Fig. 4).

Introducing software architecture to software design splits

stakeholders’ concerns into two categories: functionality and

non-functional properties. The software architecture is the

structure of the system, which comprises software

components (functionality), the externally visible properties

of those components (abstraction and information hiding),

and the relationships between them, and constraints on both

components and relationships (non-functional properties) [7].

The design principle of abstraction and information hiding

(that separates the externally visible properties of the

components from the implementation of the components)

introduces CBSE to software design.

Table 2: Substitutable interoperation:

PI1, PI2, PI3 !IP1 ! PC1 !IP2 ! PO1, PO2, PO3

(a) CBSE through extensibility (b) Synthetic and Executable Operational System

with IP1_Collaborator_P; use IP1_Collaborator_P;

package IP1_Client_P is

 class Client_Pub1 is new Publisher
 procedure Prepare is overridden;
 end Client_Pub1;
 class Client_Pub2 is new Publisher ... end;
 class Client_Pub3 is new Publisher ... end;

end IP1_Client_P;
...

with IP2_Collaborator_P;
use IP2_Collaborator_P;
package IP2_Event_P is

 class Event_Sub1 is new Subscriber
 procedure Response is overridden;
 end Event_Sub1;
 class Event_Sub2 is new Subscriber ... end;
 class Event_Sub3 is new Subscriber ... end;

end IP2_Listener_P;
...

with IP1_Collaborator_P, IP2_Collaborator_P;
use IP1_Collaborator_P,
IP2_Collaborator_P;
package IP1_IP2_P is

 class PC1_Pub_Sub is new
IP1_Collaborator_P.Subscriber,
 IP2_Collaborator_P.Publisher
 procedure Response is overridden;
 procedure Prepare is overridden;
 end PC1_Pub_Sub;

end IP1_IP2_P;
...

with IP1_Client_P;use IP1_Client_P;
with IP2_Event_P; use IP2_Event_P;
with IP1_IP2_P; use IP1_IP2_P;
EXE_SYS:
declare
 PI1: aPublisher := new Client_Pub1;
 -- aPublisher stands for access type
 PI2: aPublisher := new Client_Pub2;
 PI3 : aPublisher := new Client_Pub3;
 COM_IP1 : IP1_Collaborator;

 PO1 : aSubscriber := new Event_Sub1;
 PO2 : aSubScriber := new Event_Sub2;
 PO3 : aSubscriber := new Event_Sub3;
 COM_IP2 : IP2_Collaborator;
 PC1 : PC1_Pub_Sub; -- PC1 plays dual role of both Subscriber and Publisher via
multiply inheritance
begin
 COM_IP1.connect ((PI1, PI2, PI3), PC1);
 --* PI1, PI2, PI3 ==> PC1
 COM_IP2.connect (PC1, (PO1, PO2, PO3));
 --* PC1 ==> PO1, PO2, PO3
 loop
 delay 1;
 exit when SYS_Terminated;

 --: PI1.Prepare(d)!MET(met_amt);
 --: PI2.Prepare(d)!MET(met_amt);
 --: PI3.Prepare(d)!MET(met_amt);
 --: *[PI1.Deliver(d)!LAT(lat_amt) ! PI1.Prepare(d)!MET(met_amt);
 --: [] PI2.Deliver(d)!LAT(lat_amt) ! PI2.Prepare(d)!MET(met_amt);
 --: [] PI3.Deliver(d)!LAT(lat_amt) ! PI3.Prepare(d)!MET(met_amt);
 --: [] PC1.Observe(d)!LAT(lat_amt) ! PC1.Respond(d)!MRT(mrt_amt);
 --:]

 --: ||

 --: PC1.Prepare(d)!MET(met_amt);
 --: *[PC1.Deliver(d)!LAT(lat_amt) ! PC1.Prepare(d)!MET(met_amt);
 --: [] PO1.Observe(d)!LAT(lat_amt) ! PO1.Respond(d)!MRT(mrt_amt);
 --: [] PO2.Observe(d)!LAT(lat_amt) ! PO2.Respond(d)!MRT(mrt_amt);
 --: [] PO3.Observe(d)!LAT(lat_amt) ! PO3.Respond(d)!MRT(mrt_amt);
 --:]

 end loop;
 COM_IP1.disconnect;
 COM_IP2.disconnect;
 end;

4.3 Executable Products across Systems Perspective

With the conceptual prototype that is derived from 1st level

DFD and architected with substitutable interoperation in re-

ADA, all the components are communicable with each other by

playing different roles (publisher / subscriber). With the

components to be extended / refined, the technical system is also

executable. The evolution of systems perspective by means of

components extension and substitution can reach the extent that

the functional component is fulfilled the complete functionality,

which leads to the operational system.

PADT supports all the products across systems perspective in

such an evolutionary way that the intended system starts with

SSAD, then turns to CBSE, and are executable. In order to

architect the shadow of Figure 5, there essential substitutable

interoperators in re-ADA [11,12] are formally described and

shown in Table 2.

5. ACKNOWLEDGMENTS

An appreciation and understanding of software engineering

concepts is best gained by participating in a real software

engineering project. The selection, definition, specification,

development, design, coding, implementation, documentation,

and defense of a substantial software engineering product is the

Capstone Project. The Capstone Project is a software project

through which students learn software engineering principles

and theory. They put them into practice by creating Problem

Requirements Documents (PRD) and Product Specification

Documents (PSD) that describe the objectives and expected

outcomes of the project.

We are deeply grateful to Azusa Pacific University, where

teaching software engineering becomes a new chapter in our

academic career. Software engineering has developed us in the

philosophical depth of recognizing the world. Over the past 20

years of working on software engineering, we have experienced

the beauty of creation. Therefore, our faith and belief are

strengthened not because of our creativity in software

engineering, but because of our humility in awe of the Creation

of the universe. So we owe an ultimate word of thanks to the

Most High for letting us be talented for enjoying Software

Engineering as part of our life.

6. CONCLUSION

SSAD is a straightforward and pragmatic Requirements

Engineering method that can be well documented and educated

[4,5], while CBSE favors adjusting requirements at later stages.

PADT framework provides software engineering (education)

with a new perspective transitioning view in such a pragmatic

way that SSAD is streamlined through to CBSE -- engineering

software systems is a documentation-driven perspective

transitioning process.

One of the main drawbacks while applying PADT/re-ADA

through Capstone Project is the loss of flexibility of drawing

DFD. Based on the previous research accomplishments

[11,12,27], further work focuses on the automated tool to be

developed to architect the interior structure (described in DFD)

with substitutable interoperation mechanism in re-Ada. The

difficulty may be the intelligent regulation of diverse dataflow

with the DFD, and the unification of data representation for

dataflow. The DFD model within SSAD is able to represent the

interior structure for the system, but may result in some

ambiguity because of the lack of a mathematical foundation.

In conclusion, with emphasis on Perspectives from different

stakeholders, Activity throughout software life cycle,

Documentation for everything, and Transitioning from phase to

phase, the PADT framework streamlines SSAD through to

CBSE is t0 regulate DFD to a top-level architecture. The gap

between SSAD and CBSE is bridged by re-ADA, so as to fulfill

products executable throughout SDLC.

7. REFERENCES

[1] Wikipedia, Component-Based Software Engineering,

http://en.wikipedia.org/wiki/Software_componentry

[2] What is CBD good for? CBD, frequently asked questions
http://www.users.globalnet.co.uk/~rxv/CBDmain/cbdfaq.htm#benefits

[3] S. Schach, Object-Oriented Software Engineering, McGraw Hill

Higher Education, 1st ed, 2008

[4] Wikipedia, SSADM,

http://en.wikipedia.org/wiki/Structured_Systems_Analysis_and_De

sign_Methodology

[5] Heinrich HuBmann, Formal Foundations for Software Engineering

Methods, LNCS 1322, Springer, 1997

[6] Capstone Project,

http://www.apu.edu/caps/cismis/details/requirements/, Azusa

Pacific University

[7] IEEE Standard Board, Recommended Practice for Architectural

Description of Software-Intensive Systems (IEEE-std-1471 2000),

September 2000

[8] DoD Joint Technical Architecture (JTA Version 4.0, 2002),

http://www-jta.itsi.disa.mil/

[9] R. Pressman, Software Engineering: A Practitioner's Approach,

McGraw-Hill S/E/M, 6 edition, 2004

[10] S. Liang L. Zhang, Luqi, Automatic Prototype Generating via an

Optimized Object Model, Ada Letters, Vol. XXIII (2), June 2003

[11] S. Liang, L. Reibling, S. Sambasivam, “Automatic Prototype

Generating” Restated with re-ADA, Proc. of SIGAda09, Nov. 1-5,

2009, Tampa Bay, FL.

[12] S. Liang, L. Reibling, J. Betts, re-ADA: Reliable Ada-based

Descriptive Architecture for C4ISR via a Quantitative

Interoperating Model, Proceedings of SIGAda’08, Oct 26-31,

2008, Portland, OR.

[13] Reibling, L.A., "Background Discussion on Mission Management

Systems," Trade Study Report to Boeing DARPA Unmanned

Combat Air Vehicle ATD Program, GDE Systems, Inc. Publication

No. STS-98-0003A, 8 September 1998.

[14] Liang, X. Puett J. Luqi, Synthesizing Approach for Perspective-

based Architecture Design, Proceedings of 14th IEEE International

Workshop on Rapid Prototyping, June 9-11, 2003, San Diego, CA

USA

[15] X. Liang, Software Documentation-Driven Manufacturing, Proc. of

COMPSAC 2003, Nov.3-6, Dallas, TX

[16] S. Liang, J. Puett, Luqi, Quantifiable Software Architecture for

Dependable Systems of Systems, LNCS: Architecting Dependable

Systems II, Springer Verlag, 2004

[17] Luqi, Berzins, et.: A Prototyping Language for Real-Time

Software, IEEE TSE, Vol. 14(10), Oct 1988

[18] Adaptable Process Model, R.S. Pressman & Associates, Inc.

http://www.rspa.com/docs/

[19] http://www.practicalprocess.com/seyp/definition.html

[20] http://encyclopedia2.thefreedictionary.com/Software+engineering

[21] Diana Patterson, The challenges of documenting everything, ACM

SIGDOC Asterisk Journal of Computer Documentation, Volume

7, Issue 2 (March 1981)

[22] http://www.businessdictionary.com/definition/process.html

[23] ISO/IEC 12207 Software Life Cycle Processes

[24] Wikipedia, Substitutability,

http://en.wikipedia.org/wiki/Substitutability

[25] Wikipedia, Extensibility, http://en.wikipedia.org/wiki/Extensibility

[26] Automated teller machine,

http://en.wikipedia.org/wiki/Automated_teller_machine

[27] Luqi, Computer-Aided Prototyping for a Command-and-Control

System using CAPS IEEE Software, V.9 n.1, January 1992.

