

A SaaS-based framework to support the management and deploy of web

applications for exchanging information and sharing knowledge

Yliana RIVERO, Mónica SAMPIERI, Marco FERRUZCA
a
, Joaquin FERNÁNDEZ, Josep Mª MONGUET, José

Luis MUÑOZ, Hernando VILLALOBOS, Berenice BLANCO

Multimedia Applications Laboratory (LAM),

Polytechnic University of Cataluña (UPC), Barcelona 08028, Spain

a Metropolitan Autonomus University-Azcapotzalco (UAM-A), Mexico City 02200, México

Abstract

The Multimedia Applications Laboratory research

group at the Polytechnic University of Cataluña has

been working for the past four years in the

development of a system denominated as COLS to

support the management and deploy of web

applications for exchanging information and sharing

knowledge in the context of research organizations.

The evolution of the web applications developed by

this group and the requirements for its reuse,

configuration, multi-user efficiency, scalability and

fast delivery time, have made us consider the need to

convert COLS into a SaaS-based framework, which

provides an excellent opportunity for research, since

in the domains of knowledge management and e-

learning in research organizations there are few SaaS

experiences. In this paper we present a first approach

of this SaaS-based framework.

Keywords: SaaS, software as a service, knowledge

management, e-learning, software framework

1 Introduction

For the past years, the techniques, processes and

methods of software development have been

dominated by supply-side issues, giving rise to a

software industry oriented towards developers rather

than to the users. To achieve the levels of

functionality, flexibility and delivery time required

by users, the software development demands a

radical change, with a more demand-centric view, in

which the software is delivered as a service in the

frame of an open marketplace [1]. Currently, there

are evidence of this approach is being adopted by

industry: The Application Service Provider (ASP)

model became popular during the dotcom bubble,

with the emergence of the first wave of Internet

enabled applications. It is about companies that

install and support licensed software of third parties

and provide remote access to their customers.

However, the ASP services were never successful

because in most of the cases the software was not

sufficiently flexible for its daily use. The solutions

were turning out to be cumbersome of using, since

they had not been designed for its current use on

web.

More recently, the term Software as a Service (SaaS)

can be traced back to a white paper called "Software

as a Service: Strategic Backgrounder" by the

Software & Information Industry Association's e-

Business Division published in Feb. 2001 [2]. SaaS

was born as an evolution of ASP and it can be

understood as a software delivery paradigm where

software is hosted off-premise and delivered via web

and the mode of payment follows a subscription

model.

A wide range of online applications, including email,

human resources, business analytics, customer

relationship and enterprise planning, are available

[3]. This market will be growing in the next years,

according to Gartner, trends in SaaS business are [4]:

 By 2009, 100% of Tier 1 consulting firms

will have a SaaS practice.

 By 2010, 20% of companies deploying

ecommerce will use a SaaS delivery model.

 By 2010, 15% of large companies will have

started projects to replace their Enterprise

Resource Planning (ERP) backbone with

SaaS-based solutions.

 By 2010, 85% of SaaS vendors will offer

uptime service levels of 99.5% or beyond in

standard contracts, as well as performance

SLAs.

 By 2011, 25% of new business software will

be delivered as SaaS.

 By 2012, Business Process Management

Suites (BPMSs) will be embedded in at least

40% of all new SaaS offerings.

 By 2012, more than 66% of Independent

Software Vendors (ISVs) will offer some of

their services as SaaS.

However, a review of scientific literature about SaaS

reveals that there are few experiences of its

application in the domains of knowledge

management
*
 and e-learning practices in research

* In this study the knowledge management term refers

to the method that simplifies the process of sharing,

organizations. Based on this situation, this paper

presents the first approach of a SaaS-based

framework
†
, denominated as COLS

‡
 in the rest of the

paper, to support the management and deploy of web

applications for exchanging information and sharing

knowledge. The proposed framework includes the

definition of a technological reference architecture

that seeks to establish the foundations for future web

developments. It also includes the establishment of

set of unified specifications which facilitate the

design and management of production processes,

from the developer standpoint. The application of the

SaaS’s principles in the definition of the framework,

will lead to advantages of configuration, multi-user

efficiency and scalability; foreseeing the needs of

reuse, maintenance, development and efficient

distribution of future developments. Finally, the

framework is presented with an example of its

application.

2 COLS Architecture

COLS can be defined as a set of processes and

technologies used to solve a problem. It is the

framework on which several objects are integrated to

give a solution. COLS takes into account not only the

technology, but people and processes, and how they

are organized into working groups and the methods

used to carry out their activities. COLS integrates

various web applications for multiple users. These

applications allow: (a) manage knowledge and

innovation, (b) improve the ways in which users

create, share and reuse knowledge and useful content

to their learning objectives, training and / or

communication, (c) support the link between

processes, people, tools, tasks, put them together in a

virtual work environment, and (d) develop effective

exchange practices among geographically dispersed

work teams. The technological design of COLS has

been developed following the Model-View

Controller (MVC) design pattern [5]. The result is

differentiate and separate data elements and specific

functions of the platform from the presentation of

data in the user interface and business logic. More

specifically, MVC implementation is represented as:

model (users, environments, artifacts, contents); view

(php pages, and CSS layers implemented in

appropriate formats to interact with users) and

controller (communication between the model and

view layers, control of events and access to

contents). The conceptual design of the model layer

distribute, create, capture and understand the knowledge of

an organization.

† About the framework concept, the meaning given to

it in this study relates to a setting that serves as a guide for

the design, development, management and deploy of web

applications.
‡ Should be noted that the acronyms have no meaning,

is just a name.

is based on the idea that COLS can be understood as

a cognitive system [6] composed of the four above-

named entities involved: users, environments,

artifacts and contents (also understood as products),

as shown in figure 1.

Fig. 1. Entities involved in COLS

Three modules are integrated from these four

entities: (1) User Module: represents a single module

that manages user data across a centralized platform.

(2) Content Module: represents a single module that

manages centrally the contents of the entire platform.

The environments are interpreted as micro-platforms

(or communities) that live within the macro platform.

Artifacts are interpreted as applications (features or

tools) that facilitate the users' tasks of a specific

environment. Both, environments and artifacts are

configured in the Control Module (3).

As noted above, the artifacts are defined as different

applications (or features) that an environment may

have. Thus, it is necessary to define configuration

information describing each type of artifact.

However, artifacts are not the final applications

implemented in an environment. The environments

use instances of artifacts. That is, the artifact describe

the application type, how it works, who created it,

who managed it, how it’s installed, how to configure

it, etc. The instance represents an implementation of

the artifact in a specific environment with its own

configuration. Figure 2 represents a systemic view of

COLS.

Fig. 2. Systemic view of COLS

For example: there is forum type, understood as an

artifact, which has a manager for creating forums and

registering their users. The artifact itself is

instantiated each time it is added to a specific

environment. All the contents of each instance are

integrated in the content module and these contents

are accessible for it. The generated content by an

instance of the artifact carries an identifier that

indicates which instance belongs to. From the

identifier can be deduced in which environment has

been created, by whom and under what profile.

Regarding the use of artifacts, it is very important to

describe the profiles that can be used. The technical

architecture on which COLS is based is flexible

enough to accept all kind of artifacts, among which

can be found simple tools with profiles of use of a

single level, but also more sophisticated tools, such

as managers, who employ two levels of profile.

Additionally, services architecture is used,

represented by web services, in which components of

the platform are prepared to facilitate the integration,

communication and distribution of applications to

multiple users in different environments. An

important advantage of this approach is that it leads

to a flexible and agile development process, able to

meet rapidly changing needs of any organization that

carries out tasks of knowledge management and

innovation. "Software has become a critical element

in all aspects of modern life, supporting wealth

creation and being deployed in products and

processes designed to improve the quality of life. The

demands placed on the software engineering

community, such as productivity, flexibility,

robustness and quality, have increased at an

exponential rate, leading to new development

paradigms, formalisms and methods of working, the

success of which have been truly remarkable" [1].

3 Conversion to SaaS

Software as a Service (SaaS) is a software delivery

model, which provides customers access to business

functionality remotely (usually over the internet) as a

service. The customer does not specially purchase a

software license. The cost of the infrastructure, the

rights to use the software, and all hosting,

maintenance and support services are all bundled into

a single monthly or per-use charging. The literature

[7, 8] considers four levels of SaaS Maturity models

related to support of tenants face-to-face instances of

software solution and database:

 Level 1 Maturity Model (Ad Hoc/Custom):

In this model, the SaaS vendor creates a

separate custom instance for each tenant.

The vendor may choose to do this for a

variety of reasons: 1. The system

architecture of the application may not be

amenable for customization and the vendor

is required to create separate copies of the

application for each vendor requiring

customization. 2. The application may have

not been designed for multiple tenants. 3.

The application may not be scalable, which

will require a separate instance for each

tenant. Clearly Level 1 maturity model has

many business issues as such as– high

operational cost due to separate instances

for each tenant, high support cost, high cost

for development and configuration

management of different versions of the

application and high infrastructure cost.

 Level 2 Maturity Model (Configurable): In

this model the SaaS vendor is also required

to deploy separate instances for each tenant

due to #2 and #3 stated in the Level 1 case.

However, each instance may be configured

to look different and show different

characteristic. Unlike Level 1, single code

base is used in Level 2. Though the

instances are different for each tenant, there

are no overheads of creating and managing

different code bases. But, the infrastructure,

operational and support costs are still high

and comparable to the Level 1 model.

 Level 3 Maturity Model (Configurable and

Multi-tenant efficient): Level 3 model

allows the vendor to support multiple

tenants on the same instance. The

application, unlike in Level 1 and Level 2,

is designed to support multiple tenants. The

infrastructure, operational, support costs are

significantly lower in the case of Level 3.

However, development costs of a Level 3

SaaS application would be higher than

Level 1 or Level 2. However, in Level 3,

scalability may be an issue and support for

additional tenants is usually done through

separate instances or vertical scaling of

upgrading the hardware on which the SaaS

applications are deployed.

 Level 4 Maturity Model (Scalable,

Configurable and Multitenant efficient):

Level 4 is the most mature and advanced

SaaS deployment model. Level 4

deployment model provides a high degree

of support for scalability. The load balancer

provides a single virtual instance to all the

tenants. The load balancer will redirect each

tenant to a particular instance depending on

the load balancing policies. The assignment

of a tenant to an instance in Level 4 is

dynamic and determined at runtime by the

load balancer.

There are many reasons why we decided to develop

and distribute the COLS applications as SaaS

applications: first, the challenge we have is to find a

way to develop web based applications that can

evolve with changing business needs [9]. Also we

have to develop these applications rapidly as well as

in a cost effective manner. The development

approach should also reduce the gap between what

the users actually want and what is being

implemented in terms of functionality [10].

In this regard, COLS applications are in a transition

phase to a SaaS model, which will lead to advantages

of configuration, multi-user efficiency and

scalability; foreseeing the needs of reuse,

maintenance, development and efficient distribution

of future developments. Currently, in COLS each

artifact instance may be configured to look different

and show specific characteristics for each tenant.

There are different aspects of a COLS environment

which can be configured [11]:

 User Interface (UI): Configurability of user

interface means the ability to change the

look and feel of the UI available to the

players. We can configure the user interface

to change its look and feel or to reflect

corporate branding. The UI features like

icons, colors, fonts, titles, etc. can be

changed. This not includes only

adding/editing/deleting different controls on

the pages but also add/delete/edit forms in

the user interface. Every page structure is

defined by templates with css styles and

layers which facilitates setup and

customization.

 Functionalities: Other than configuring the

UI to give unique look and feel

to COLS environment, we are able to

configure the behavior of the application.

This is important because it makes possible

that the same kind of artifact may have

different behaviors in different

organizations.

 Data: Data is at the heart of any SaaS

application. Data drives the SaaS

applications. In case of a particular type of

SaaS application, that is, in a specific

domain like knowledge management, there

will be similar type of data across different

tenants. But there will be some unique

features in the database of each tenant.

COLS allows through its content module

storing data which meets the most common

requirements of the tenants with an option

to add the tenant’ specific data requirements

like adding extra fields or adding specific

constraints.

 Access control: Each tenant using a COLS

environment will have multiple individuals

using the system. We can create individual

accounts for end users, and define which

resources and functions each user will

access. Since there will always be an

organization’s specific access control data,

it is necessary allow create, edit or delete

roles/users specific to the organizations.

Users will be grouped into different roles

according to the organizational structure and

the access control privileges can be

configured for each of these. The access

control privileges specify what data and UI

in a particular role can be access. There are

some data which can only be viewed (only

read permission) while there might be some

other data which is editable (read and write

permission) by users of a particular role.

4 COLS Framework

The framework that we are developing includes the

definition of a technological reference architecture

that seeks to establish the foundations for future web

developments of our research group. Also, includes

the establishment of a set of unified specifications

which facilitate the design and management of

production processes, from the developer standpoint.

In order to explain the progress we have achieved in

this direction, in this section we describe the

definition of the components of COLS taking as a

references one of the projects we have developed: E-

FREN. It should be noted that we have already

implemented other COLS environments, primarily

on topics related to e-learning, including:

http://www.hoyunpocomas.net (innovation &

research community), http://www.opera-

elearning.com (opera e-learning system),

http://www.disfagia.hoyunpocomejor.net (treatment

of dysphagia).

4.1 Environments

In COLS, an environment is defined as all those

virtual spaces designed to facilitate the

communication, learning and interaction among its

users through the provision of different

functionalities. The environment is the context in

which the subjects create, share and reuse knowledge

and useful content for its objectives. The

environment defines which people are involved in

the virtual work space (users), what software objects

are used (artifacts) y what contents are available.

E-FREN (figure 3) is a COLS environment, which

has been developed for the management of

knowledge in nephrology. Specific goals of E-FREN

system include: (a) Visualize and transfer the

expert’s knowledge to nephrologists residents, (b)

Broaden the learning experience to the specialists in

a useful format by sharing the learning process

between several hospitals, (c) Complement the tutor

task and increase the tutorial efficiency by doing

more with less effort, and (d) Focus in the scope of

experience, transmitting more and better knowledge

in nephrology and its skills (dialysis and transplant).

The system is addressed to medical specialists (to

update or contrast knowledge), and internal medical

residents (doing nephrology specialization in

hospitals) from Spain and Iberoamerica. The system

E-FREN has the certification of the Spanish Society

of Nephrology (SEN from its Spanish name), has

credits from the Committee on Continuing Education

of the National Health System and the guarantee of

the National Commission of Nephrology.

Fig. 3. E-FREN web site index page

4.2 Artifacts

In COLS, an artifact refers to all tools or

functionalities that facilitates the users work in a

virtual space (environment), contributing to the

achievement of the objectives of the context to which

they are associated. The design and implementation

of new artifacts is always done thinking in its

possible reusability in other environments. When this

reusability is needed the cost of adapting the artifact

to another environment is very low. Most times this

adaptation only involves the configuration of the new

instance and the view update to apply it the design of

the new environment. One of the ultimate aims of

COLS development team is to have a complete

repository of artifacts that can be easily reused by

any new environment that is required to implement.

E-FREN has the following artifacts:

 Menu: Contains all the functionalities to

display the menu in the private and the

public part of the environment and the

options of content management. The options

are enabled depending on the user's profile.

 Personal data: Defines the services of the

user's personal profile, lists of persons per

profile, etc.

 Forums: Contains the functionalities of

query-execution of the discussion forums,

and its management. It also contains the

functions of all related contents (additional

documents, papers, reviews, etc.).

 Activities: It is the central artifact of E-

FREN, it defines the structure of courses

(modules, themes, cases for resolution,

study cases, bibliography, etc.). It contains

the features of query-execution and

management.

 Progress: Gathers information about events

generated in the environment, e.g. access to

contents, user’s participation, evaluation

results, etc.

 Publications: Contains the functionalities to

post and view news and calendar of

activities.

5 Future Directions

Currently we are working to extend COLS in

different directions:

 The development of semantic tools and

methodologies to build a domain module

related to the content. This module will be

the basis that provides semantic services

about the contents in a new generation of

artifacts.

 The use of workflows to implement

processes integrated in COLS.

 The development of monitoring tools that

could trace the use of the system done by

every user. Beyond the contents that create

the user, this monitoring information, like

consulted contents or time spent, could be

later analyzed and typified to let the system

know better the users.

 The extension and exploitation of the user

module to allow, jointly with the control

and domain modules, the development

of adaptive artifacts.

 Moreover, as we need new features in the

environments, create new artifacts that can

be instantiated, reused in other

environments.

 The development of an incremental design

methodology for improving the design

process of web applications.

 Making innovation happens with the

development of tools that allow users to

participate in the design process of web

applications.

References

1. Bennett, K., Layzell, P., Budgen, D., Brereton, P.,

Macaulay, L., Munro, M. (2000). Service-based

software: the future for flexible software. In: Software

Engineering Conference, 2000. APSEC 2000.

Proceedings. Seventh Asia-Pacific. pp. 214-221.

2. SIIA (2001-02). Software as a Service: Strategic

Backgrounder. Retrieved from

http://www.siia.net/estore/ssb-01.pdf

3. Jacobs, Jean (2005). Enterprise software as service.

July 2005. Queue, Volume 3 Issue 6.

4. Predicts 2007: Software as a Service Provides a Viable

Delivery Model (2006). Gartner, Inc.

5. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,

P. and Stal, M. (1996). Pattern Oriented Software

Architecture: A System of Patterns. John Wiley &

Sons.

6. Ferruzca, M., Fabregas, J. & Monguet, J.

(2007). MAIA: a methodology for applying Distributed

Cognition to the management of learning systems. C.

Montgomerie & J. Seale (Eds.), In: Proceedings of

World Conference on Educational Multimedia,

Hypermedia and Telecommunications 2007 (pp. 1413-

1422). Chesapeake, VA: AACE.

7. Chong, F and Carraro, G. (2006). Architecture

Strategies for Catching the Long Tail. Microsoft

Corporation, April 2006,

http://msdn.microsoft.com/en-us/library/aa479069.aspx

8. Kwok, T., Nguyen, T., and Lam, L. (2008). A Software

as a Service With Multi-tenancy Support for Electronic

Contract Management Application. In: Proceedings

IEEE Conference on Services Computing, July 2008.

9. Ginige, A. (2001). New Paradigm for Developing

Software for E-Business. Proceedings of the IEEE 2001

Symposia on Human Centric Computing Languages

and Environments (HCC 2001). IEEE Computer

Society, Stresa.

10. Fischer, G. e. (2004). Meta Design: A Manifesto for

End -User Development. Communications of the ACM

47(9), (pp. 33-37).

11. Nitu (2009). Configurability in SaaS (software as a

service) applications. In: Proceeding of the 2nd Annual

Conference on India Software Engineering Conference

(Pune, India, February 23-26, 2009). ISEC '09. ACM,

New York, NY, 19-26.

http://doi.acm.org/10.1145/1506216.1506221

