
Program Visualisation tool for teaching programming in C

Mr. Stephen Kirby, Mr. Benjamin Toland, Dr. Catherine Deegan

Department of Engineering

School of Informatics and Engineering

Institute of Technology Blanchardstown, Dublin, Ireland

ABSTRACT

This paper presents a visualisation tool for novice

C programmers. It is well known that

programming is perceived to be difficult among

novice learners. The aim of this tool is to

graphically visualise the code that the student is

working on to give them a coherent computational

model. It is hoped that this tool will help the

learner achieve a coherent mental model in

common with the instructor and the rest of the

class. This could allow valuable class time to be

concentrated on problem solving issues earlier in

the teaching semester.

Keywords: programming, novice programmers,

Jeliot-C, Software Visualisation, Program

Animation

INTRODUCTION

With the introduction of C++ and Java to the

programming world, a lot of programmers have

moved away from the C language but C remains

important in the Engineering industry. Most

program visualisation tools currently available for

the C language deal with algorithm visualisation

(Figure 1) and ignore fine grained program

visualisation. For novice programmers the main

emphasis is on basic programming skills such as

variable declaration, functions and pointers and not

on sophisticated algorithms such as sorting. This

project aimed to produce a program Visualisation

tool for the novice programmer in C.

Figure 1. Pancake Sorting Algorithm Visualisation

The reason that this new tool has been developed

for C and not C++ is twofold. One reason is that

the C computational model is simpler than the C++

model which includes all of the C concepts plus

additional object oriented capacities. The second

reason is that C is often used as the introductory

language in engineering programming – as is the

case in the authors' institution.

Program visualisation. Program Visualisation

involves presenting the learner with a visual

representation of an executing computer program.

It has been the experience of the authors that many

learners struggle with programming as they do not

have a coherent mental model of how a basic

program executes. By allowing beginner

programmers to observe a graphical representation

of their program in execution they are greatly

helped in developing this computational mental

model and thus the learning of programming is

simplified. It has been found that Program

Visualisation tools help in the teaching of the

Java[1] programming language but there is no

easily available such tool for the C language which

is still a major language used in Computer

Engineering education.

JELIOT

Jeliot is a program visualisation tool developed in

the University of Joensuu, Finland, which

visualises Java code at a fine grained level aimed

at beginner programmers. Figure 2 shows Jeliot,

with its rich visualisation engine, which highlights

the part of the program that is being currently

executed.

Figure 2. Jeliot

Jeliot has been designed with modification in mind

so that the animation engine component can be

used to animate other programming languages.

To achieve this, the Jeliot team have used a novel

technique to decouple the interpretation and

execution of the source language (Java) from the

visual animation engine. The key to this technique

is a new intermediate language called MCode.

The source language interpreter interprets the

source code and outputs a trace of the program

execution expressed in MCode. This MCode trace

is then fed into the visualisation engine to produce

the animation. Thus the Jeliot team hoped that

others could replace the source code interpreter

with a different one, e.g. a C++ interpreter that

would also produce MCode and so not need to

modify the animation engine part for a new

language.

The Jeliot team used a 3
rd
 party command line

Interpreter (Dynamic Java [3]) as the basis of their

source language interpreter. This interpreter was

modified to produce an MCode trace of the

program execution including all runtine

information. This MCode trace was then fed into

the visualisation engine to render the animation on

screen. Figure 3 illustrates the functional structure

of the Jeliot program [2].

Figure 3: Jeliot Functional Structure

INITIAL PROJECT SCOPE

Thus the initial idea of this project was to find a

third party C interpreter, modify it to produce

MCode and simply replace the Dynamic Java

interpreter. The first problem with this plan was

finding a suitable C interpreter. As Jeliot is itself

developed in the Java language a C interpreter

written in Java was sought.

VISUAL INTERPRETER

Visual InterPreter (VIP) [4] is a program

visualisation tool for a subset of the C++

programming language called C--. VIP was

developed in the University of Tampere, Finland.

Figure 4 shows VIP in operation. As can be seen,

VIP is not as visually appealing as Jeliot.

However, it does at its core have a C-- interpreter

which could possibly be modified to suit the

purpose of this project.

Figure 4. VIP

VIP is based on a C-- Interpreter developed in

Tampere called Command Line InterPreter (CLIP).

CLIP [5] is built using a “compiler-compiler” tool

called SableCC [6] which generates fully featured

object-oriented (Java) frameworks for building

interpreters. Frameworks include intuitive strictly-

typed abstract syntax trees (AST) and tree walkers.

This is the basis of how MCode can be created in

VIP; as a tree walker walks across the AST,

MCode can be produced and fed into the animation

engine that can be viewed by the novice

programmer. This is the approach taken in this

work.

The subset of C++ implemented by CLIP, C--,

falls between C and C++. As such it is neither a

full C++ interpreter nor a full C interpreter. Key C

concepts missing from CLIP include global

variables, standard I/O functions and bit operators.

JELIOT-C

The new tool developed is called Jeliot-C as it

takes advantage of the animation engine of the

Jeliot system and the interpreter of the VIP project

to produce an animation tool for C.

MCODE

MCode is an intermediate language developed by

the University of Joensuu to allow them to

decouple the components of their Jeliot program.

To get a better understanding of MCode an

example is shown below. We begin with a simple

Java statement:

 int y;

For the above statement in Java the following

MCode is produced by the interpreter [7].

VD, y, 0, ?, int, 1, 4,3,4,7

Where the various fields refer to the following:

VD, Name, NO_REFERENCE/ir,

value, type,
FINAL/NOT_FINAL, Loc

“Name” is the name of the variable. In this case

“y”.

“NO_REFERENCE/ir” is a field used in complex

statements to refer multiple lines of MCode to one

source line.

“Value” is the value of the variable if known

otherwise a ? will be inserted.

“Type” is the type of variable. Example of types

include int, double, char

“FINAL/NOT_FINAL” is whether the value is

final or can be altered later on.

“Loc” is the location of the statement in the source

code document.

MCode was designed with Java in mind and so

while MCode can express any of the concepts

found in Java, and so by extension many other

object-oriented languages, it cannot express some

of the concepts found in procedural languages such

as C and the non object oriented concepts of C++.

These include:

1. Pointers

2. Structures

3. Global variables

To address this problem the MCode language had

to be modified/extended to allow the use of these

concepts. Below is the same example as above but

expressed in the new extended MCode that

supports the C language.

VD, y, 0, ?, int, 1, 4,3,4,7,

0x0054

Where the various fields refer to the following:

VD, Name, NO_REFERENCE/ir,

 value, type,
 FINAL/NOT_FINAL/
 GLOBAL/NOT_GLOBAL/
 STATIC/NOT_STATIC,
 Loc, Address

There are two fields to look at which are:

“FINAL/NOT_FINAL/GLOBAL/NOT_GLOBAL

/STATIC/NOT_STATIC” is an extended field that

now includes not only whether the variable is a

constant (FINAL) but also whether it is a global

variable or is declared to be static. This field can

be any combination of the possible values.

 “Address”. This is a new field inserted into the

declaration to include the physical memory address

of the variable. This will allow the use of pointers

in the animation engine to be implemented and

possibly a “memory view” animation showing the

physical locations of the variables in the program.

These alterations to MCode have been agreed with

the team from the Jeliot project.

The alterations to the MCode specification was the

first modification required to the Jeliot

architecture. Afterwards it was necessary to

change the visualisation engine of Jeliot so that it

could accept and visualise the new MCode. For

example Figure 5 shows an initial mock-up of how

it the visualisation engine would visualise pointers

and structures.

Figure 5. Visualisation of Pointers and Structures

IMPLEMENTATION

As mentioned previously MCode was designed

with Java in mind and therefore it had not been

designed for other programming languages that are

not object orientated, such as C. This meant that

the MCode language had to be modified/extended

to include other concepts that are in the C

language.

In implementing the project an attempt was made

to extend rather than simply modify the CLIP

interpreter. This would hopefully reduce the work

required to re-integrate any new future versions of

CLIP released.

CLIP is designed to implement C-- a subset of

C++ which as mentioned previously does not fully

implement all of C’s features either. This posed the

question of whether the attempt to only extend

CLIP would in fact be feasible. At the time of

writing the authors were still adopting the

approach of extending rather than modifying CLIP

The animation engine of Jeliot had been designed

with Java in mind. Because of this it could not

represent C concepts such as global variables,

pointers or structures and so additional animation

capabilities had to be added. The animation

engine also had to be updated to be able to accept

the new MCode specification. Again, an attempt

to extend rather than modify the animation engine

code was made to try and reduce the re-integration

effort required if a new version of Jeliot were to be

released in the future.

CONCLUSIONS

According to a current research project [8] in the

authors' institution analysing the learning styles of

incoming students in engineering and computing

71% have been found to be visual learners. Visual

learners are students who prefer the use of visual

techniques, such as diagrams and colour to aid

their learning. Given these statistics the authors

believe that this tool will be of great benefit to

many novice programmers.

A fully working prototype of the tool has been

developed and will be trialled in the Autumn

semester of 2010. These trials will be conducted

on novice programmers and will survey the

students as to their preference to use of the tool to

learn a new concept as opposed to the traditional

method. The Jeliot team have done similar trails

on students [1] and although they have not found

definitively that the tool has an impact on exam

performance, it was found that the students who

did use the tool found it useful. Students who

regarded themselves as weak or who struggled in

programming reported most favourably on the use

of Jeliot.

The authors expect similar results in the trialling of

Jeliot-C with novice Engineering students. While

no quantitative measure of improved examination

performance is expected (or will be measured) it is

hoped that both learners and instructors will report

benefit through the use of a highly visual and

common mental model.

REFERENCES

[1] Ronit Ben-Bassat Levy, Mordechai Ben-Ari,

Pekka A. Uronen The Jeliot 2000 program

animation system, Pub 2002

[2] Niko Myller, The Fundamental Design Issues

of Jeliot 3, Masters Theses, Pub 2004.

[3] Koala Project, 2002. DynamicJava. WWW-

page, http://old.koalateam.com/ (Accessed

16/12/2009)

[4]VIP, 2008, WWW-page,

http://www.cs.tut.fi/~vip/en/, (Accessed

16/12/2009)

[5] CLIP, 2008, WWW-page,

http://www.cs.tut.fi/~vip/clip/clip_english.html,

(Accessed 16/12/2009)

[6] Etienne Gagnon, SABLECC, AN OBJECT-

ORIENTED COMPILER FRAMEWORK, Pub

1998.

[7] Andrés Moreno García, The Design and

Implementation of Intermediate

Codes for Software Visualization, Pub 2005

[8] G. Gray, D. Duffin 2009. Learning Styles Sub

Theme, ContinueIT: Strategic Innovation Fund.

Project Report: 2007-9. Available on request from

geraldine.gray@itb.ie. Unpublished report.

