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ABSTRACT

Determine the feasibility of an method of independent
component analysis (ICA) on signal mixtures which directly
minimizes the mutual information (MI) criteria between the
signal components. The parameters in the optimization are
performed in polar coordinates allowing 1) a plot of the MI
criteria over each final parameter solution and to 2) visualize the
behavior of the MI criteria in relation to the histogram bin size
and data sample size. The algorithm was tested with dynamic
images composed of time varying pixel intensities simulating
concentrations of radiopharmaceutical activity. The method
was able to converge to the global minimum and generate the
underlying source signal and component images if the initial
conditions of the optimization parameter are close (+10o) from
the final solution.

Keywords: Independent Component Analysis, Dynamic
images, Mutual Information, Polar coordinates, Optimization.

1. INTRODUCTION

Independent Component Analysis (ICA) is a method for
temporal and spatial signal extraction [Herault 1986, Comon
1994]. The general form of the method is describe in Eq (1),
where X is the signal mixture array, W is the unmixing matrix
and S is the estimated source single array.

S = W X (1)

Many of the previously described methods involve a further
transformation of S by g(S) based on a model probability
density function (pdf). In these methods, there is a search for a
unmixing matrix W is that maximizes the entropy of the
system [Bell & Sejnowski 1995] or maximizes the likelihood
estimate to a give model (see figure 1). The actual pdf of the
source signal is not known; however, these techniques work if
the model pdfs are an approximation to the source signal pdfs
[Cardoso 2000, Amari 1998].

Other forms of ICA have been reported which do not rely on
model pdfs and instead involve the direct minimization of the
mutual information or other cost function between the estimated
source signals in S [Hyvarinen 1997, Almedia 2003, Stogbauer
2004]. In some techniques, the requirement of true
“independence” between the signals is replaced with the goal of
separating mutually correlated signals, i.e. separating statistically
“dependent” signals [Almedia 2003]. The mutual information
(MI) criteria can be defined for two discrete signals A and B in
Eq (2) [Clover & Thomas 1991] , where pAB represents the joint
histogram distribution and pA and pB are the marginal
distributions. In Eq 2, A and B would represent two different
rows within matrix S. The total MI would then be the sum of
MIs for all possible combinations of rows in S .

(2)

The goal of this paper was to see if the total mutual
information between the estimated source signals could be
directly used as a cost function to optimize the search for the
appropriate unmixing matrix W. To evaluate the behavior of
the MI as a cost function, the optimization was performed in
polar coordinates rather than in the cartesian coordinates. The
polar coordinates allow a plot of the MI over a range of
angular rotations for each final parameter showing the
convergence or non-convergence on a global minimum. In
addition, the effect of histogram bin size on the behavior of the
MI cost function could be revealed. It is known the MI
function can be unsmooth causing problems in the search for
either it’s maximum or minimum [Maes 1997]. Known factors
which may affect the behavior of the MI included the number of
histogram bins, histogram interpolation methods, and data
sample size [Maes 1997]. In this paper, the test data were
dynamic images where each pixel intensity varied over time.

2. METHODS

In Eq (1), each column in X represent a random variable x(t)
and each row in W represents a weight vector w [Stone 2004].
If w are unit length vectors, then each element of S can be
conceptualized as the orthogonal projection of X on to each
the unit length w vectors in W. The proposed method
involves non-orthogonally rotating these unit length weight
vectors with the goal of minimizing the mutual information
(MI) criteria calculated between each source array row in S.

The general processing algorithm is shown in Fig 2. The
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Figure 1. Independent component analysis where X is an m x n
array of signal mixtures, W is a m x m weight matrix (unmixing
matrix), S is the estimated source signals, and Y is the signal after
transformation g(S) which is based on the model pdf of the source
signal.
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algorithm starts with a dimensionally reduced and whitened
form of the data Xw, which is a k x n sized matrix Eq (3),
where k is the number of selected principal components and n
is the number of data vectors. The preprocessing involves
principal component analysis (PCA) to obtain the k largest
eigenvalues (and corresponding k eigenvectors () of XT.
ICA requires a zero mean vector, so preprocessing with PCA
was also performed assuming a zero mean as describe by
(Naganawa 2005). In Eq (3), is a k x k diagonal matrix
containing the inverse square roots of the eigenvalues to
whiten the data. The value of k (number of principal
component selected) is an operator determined value based on
a visual assessment of where the plot of the cumulative
variance has the largest change.

Xw =-1/2X (3)

The initial conditions are then determined by searching for
the k largest vectors which have unique directions. This
search can be rapidly accomplished by first reverse sorting the
column vector lengths in Xw and then selecting the vectors
which show a significant change in vector direction from the
prior vector, correlation of less than 0.4. This subset of k
selected column vectors is used to create Xf which
approximates the apex positions that are sought after in factor
analysis [DiPaola 1982] (Fig 2a). The matrix inverse of Xf
provides the initial unmixing matrix Wo which consists of k
vector rows wo with unit length (Fig 2b). In the optimization
portion of the algorithm, each wo weight vector row is
individually rotated with k parameter angles within and then
reformed to create a new unmixing matrix W (Fig 2c). The
matrix represents a k x k sized matrix consisting of k
parameter angles for the k weight vector rows in Wo.

The actual orthogonal rotation of each wo in k dimensional
space was accomplished by generating an orthogonal rotation
matrix Rj for each woj, where j indexes a row in Wo (Fig 2g).
Each Rj matrix itself is the product of k Givens rotations Gj
which are the counter-clockwise orthogonal rotations around
each of the k principal component axis [Golub 1996], Eq (4).

Rj = Gj1Gj2….Gjk where j = 1 to k (4)

The elements in each G ji matrix consist of only cos(i), sin(i),
-sin(i), with the remaining diagonals set to one, and the

remaining elements set to zero. The index i ranges from 1 to k
to cover the k rotation parameters in associated with each
wo. In the algorithm, once the number of principal
components (k) was defined by the user, the elements of all
the Givens rotations were coded as look up tables of sine and
cosine functions or constants (0 or 1) to improve
computational speed. The new unmixing matrix W can now
perform a non-orthogonal transformation of the data Xw to
obtain S (Fig 2d).

The MI cost function was calculated by Eq (2), where the
MI between all k axes (i.e. rows) in S were totaled (Fig 2e).
The search for the minimum MI was performed by the
Nealder Mead downhill simplex algorithm [ Neadler 1965]
where the parameters of the optimization are the k x k angular
rotations in(Fig 2f). The initial set of parameter consisted of
random values ranging from -2 to +2 angular degrees from the
initial directions of wo. For each iteration, there is the
generation of a new parameter matrix which is applied to the
rows of Wo to generate a new W, which then transform Xw to
a new S, which then provides a new MI value cost function
(Fig 2e). The algorithm iterates to a minimum MI with the
stopping criteria where the MI values and each parameter
value inchanges by less than 0.01 percent. At convergence,
a final parameter matrix f and its corresponding unmixing
matrix Wf were saved. Wf allows the generation of properly
scaled signals P and parametric ICA images by performing the
inverse of the transformation matrices Eq (5), where Sm is a k
x k sized diagonal matrix containing the maximum values of
each row of S from Wf x Xw. The k rows in P are the
independent or “pure” vectors in the units of the original data
X. The entire algorithm was implemented in IDL 6.3 (ITT,
Boulder, CO).

P = (Wf
-1 Sm

1/2  (5)

Dynamic images (128 x 128 x 30 time frames) containing
time varying signal and random noise were created to test the
software. Dynamic test image #1 (Fig 3) consists of three
regions. In the region 1, the image pixel intensity in of
counts/pixel/sec is proportional to the measured concentration
of radioactivity in blood after intravenous bolus injection of
the radiopharmaceutical 18F-fluorodeoxyglucose (FDG) in a
human. In regions 2 and 3, the image pixel intensities are
simulated to be proportional to the time varying tissue
concentration of radioactivity in the normal human liver and
malignant tumor, respectively, by tracer kinetic modeling
[Hoh 1996]. The vectors x(t) were generated by taking the
time varying pixel intensities for each spatial location within a
user drawn rectangular region of interest. The number of data
vectors analyzed, x(t), could be increased by bilinear
interpolation within the rectangular region of interest on the
image in each time frame. Random Gaussian type noise was
added to each element in x(t), where E is the output of the
random Gaussian IDL function RANDOMN, xmax is the
maximum value in the X, and b is the user set percent noise
level, Eq (5). The value b was set to 5% in both dynamic test
images.

noise = (E xmax b )/100 (5)

3. RESULTS

The effect of the number of joint histogram bin sizes (32 x
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Figure 2. General processing algorithm of ICA using polar
coordinates . a) find k column vectors in Xw which approximate
the apices in factor analysis. b) matrix inversion to get initial
weight vectors wo (rows in Wo). c) using Rorthogonally transform
each wo separately to create W. d) transform Xw with the
unimixing matrix W. e) calculate total MIt , sum of MI between
each row in S. f) Obtain new . g) Generate Givens rotations R to
reapply to each wo.
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32, 64 x 64, 128 x 128, 256 x 256) on the total mutual
information (MIt) from a data set consisting of 4484 data
samples (i.e. 4484 x(t) vectors) is shown in (Fig 4). The MIt is
plotted varying all parameter angles simultaneously from -
90o to 90o. The plot shows that there are local minimum
which are relatively close (+ 20 o -30o) to the global minimum.
These minimum appear to be less deep when the number of
histogram bin sizes increases. Even with the 256 x 256 bin
size there are still persistent local minima. Another interesting
finding is that near the global minimum (+10o), the MI cost
function ‘appears’ relatively well behaved.

A recalculation and replot of the total MI with a finer
resolution, from -10o to +10o, shows that the higher bin size
(256 x 256) reduces the “smoothness” of the MI function (Fig
5a). The true global minimum can be in error and the lower
bin sizes (128, 64 and 32) shows that it may be 1/2o off.
Reanalysis with a distance weighted interpolation method as
describe by Maez to smooth out the MI function is plotted
over the -10o to +10o and shows no visible improvement in the
MI function (Fig 5b).

Increasing the number of data samples analyzed by a factor
of 4 (N=17936) by bilinear interpolation of the original image
pixels, provides a smoother MI function when calculated with
the 256 x 256 histogram bins (Fig 6). Also, all bin sizes
appear to show the same global minimum at zero.

The complex behavior of the MI function is shown in Fig 7.
The total MI is plotted for each parameter angle as it is
individually changed from -90o to +90o while the other
parameter angles are held constant.

The array of independent source vectors ( or more
appropriately, the least dependent source vectors) P, calculated
in Eq (5), is shown in (Fig 8). Images of the “independent”
components were generated by rescaling each value within a
row of matrix S to a fraction of its row maximum value (Fig
8.1-3) and then assigning this value as the spatial intensity
value. This value will range from 0 to 1 and is analogous to
the method of creating factor images in factor analysis.

Dynamic test image #2 contains a linear mixture of pixel
time activity curves and is shown in (Fig 9). Only the bottom
edge, top left corner, and top right corners have pure source
vectors of plasma, liver, and tumor, respectively.
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Figure 3. a) simulated time activity curves of plasma (1), normal
liver (2), and tumor (3) after bolus injection of FDG. b) dynamic
test image #1 with added noise composed of the three region where
the pixel intensity values vary defined by the curves in (a).
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Figure 4. Effect of histogram bin sizes (32 x 32), (64 x 64), (128 x
128), and (256 x 256) on the total mutual information (MIt) where
all parameter angles are simultaneously rotate from -90o to +90o.
Note: more local minimums (arrows) when bin size is less than 256
x 256.
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Figure 5. Effect of histogram bin sizes (32 x 32), (64 x 64), (128 x
128), and (256 x 256) on the total mutual information (MI t) where
all parameter angles are simultaneously rotate from -10o to +10 o. a)
without interpolation, b) with distance weighted histogram
interpolation.
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For the second dynamic test image, there are large and deep
local minima in the MIt plot when the parameter angles are
simultaneously changed from -90o to + 90o (Fig 10). The

minima persist even with a high number of data samples
(N=40356). The effect of rotating each parameter angle
individually is shown in (Fig 11). Both plots show that the
correct global minimum is achievable if the initial parameters
are within 10o of the global minimum.

The three “independent” component images generated from
the analysis of dynamic test image #2 show the origina l
mixing pattern used to create the dynamic image (Fig 12).

The IDL6.3 software was run on a dual processor Athlon
1.79 GHz PC with 4 GBs of memory running Microsoft
Windows XP. A multi-dimensional optimization involving
three independent components (i.e. 9 rotation parameters) with
17936 data vectors was completed within 2 minutes. The
Nealder Mead simplex method was implemented for the cost
function minimization since it did not require function
derivatives and the behavior of the mutual information cost
function was known to be erratic. A more efficient gradient
based optimizer could be used if the initial conditions are close
to the global minimum.

Figure 9. Dynamic test image #2, showing image frames at times
0.7, 1.5, 3.0, 16, 36, and 60 minutes (a thru f, respectively)
containing plasma curves along the bottom row of pixels (1),
normal liver in top left corner pixel (2), and tumor in top right
corner pixel (3). Pixel within the phantom are a summed
combination of intensities based on their inverse linear distant from
their bottom edge or corners.
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Figure 7 . Total mutual information (MIt) where each parameter
angle is orthogonally rotated individually from -90o to +90o.
Histogram bin size was set to 256 x 256 bins.
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Figure 6. The cost function becomes more smooth with higher
number of data samples N= 17936 as compared to 4484 samples in
Figures 4 and 5.
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Figure 8. Comparison of ICA extracted curves (solid lines) to
original curves (data points) and th eir associated component images
generated from dynamic test image #1.
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Figure 10. Effect of histogram bin size on total mutual information
(MI t) where all parameter angles are simultaneously changed from -
90 o to +90o for dynamic test image #2 .



4. DISCUSSION

With the dynamic image data tested, it appears that the
direct minimization of the mutual information criter ia for
independent component analysis is feasible in polar
coordinated but is highly dependent on the selection of the
initial optimization parameters. These initial parameters,
which represent the direction of the ICA weight vectors in
multidimensional space, need to be within +10o of the global
minima due to the existence of deep minima just outside of
this range. Using a high number of histogram bins in
calculating the mutual information criteria reduces some of
these minima but may not eliminate all deep local minima as
was seen in the second dynamic test image with a high level of
spatial mixing.

On the other hand, a high number o f histogram bins
(N=256) reduced the smoothness of the MI cost function
when there was insufficient data samples and did not improve
with a technique of distance weighted interpolation [Maes
1997]. Unlike the MI function applied in image co-
registration, small changes in the angular parameters do not
create large changes in the joint histogram of the MI
calculation. The total MI function became smoother when the
number of data vectors was increased by a factor of 4 to 17936
by bilinear interpolation of the original image pixel data.
Interestingly, the lower bin sizes could be used if the initial
parameters are close to the final solution, i.e. within +10o of

the global minimum.
The method for finding the initial conditions was based on

the assumption that the source signals have higher signal
amplitude compared to the corrupting nois e. This allows the
search for “unique” signal vectors in the PCA space that have
“new” directions. The matrix inversion of these unique signal
vectors then provides the initial ICA weight vector directions
for further optimization. This method obviously will not work
if the amplitude of the noise is equivalent or higher than that of
the desired source signals. An alternative approach, to find
the initial weight vectors, would be a polar “grid” search from
-180o to +180o; however, this becomes computational
expensive when dealing with higher dimensions.

By setting all the weight vectors in W to the unit length of 1,
there is a reduction in the degrees of freedom for each weight
vector by one, i.e. each weight vector’s direction is fully
defined by k-1 angle parameters, (where k is the number of
principal components). For the two dynamic test images used
in this analysis, the over parameterization (k parameters x k
weight vector rows), did not lead to problems with parameter
convergence.

The algorithm was implemented to handle any number of
data dimensions within the limits of IDL’s access of computer
memory. A faster numerical optimization other than the
Nealder Mead simplex could be used if the initial conditions
are close to the global minimum. In addition, the Givens
rotations can be parallelize once the number of principal
components of the analysis have been defined.

5. CONCLUSIONS

The method described in this paper shows that minimization
of the mutual information can be performed using polar
coordinates. No a prior information or objective function was
needed, except for an estimate of the number of underlying
component signals in the mixture. The mutual information as
a cost function can be unpredictable except near the global
minimum (within + 10o). The function can have local minima
which are dependent on the number of histogram bin sizes
used in the calculation of the MI criteria and in the number of
data samples used in the analysis. Near the global minimum,
lower histogram bin sizes may be use.
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