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ABSTRACT

Determine the feasbility of an method of independent
component anaysis (ICA) on signal mixtures which directly
minimizes the mutual information (M) criteria between the
signal components. The parameters in the optimization are
performed in polar coordinates alowing 1) a plot of the Ml
criteria over each final parameter solution and to 2) visudize the
behavior of the MI criteriain rdation to the histogram bin size
and data sample size. The algorithm was tested with dynamic
images composed of time varying pixel intengties simulating
concentrations of radiopharmaceutical activity. The method
was able to converge to the global minimum and generate the
underlying source signal and component images if the initia
conditions of the optimization parameter are close (+10°) from
thefinal solution.

Keywords Independent Component Anaysis, Dynamic
images, Mutual | nformation, Polar coordinates, Opti mi zation.

1. INTRODUCTION

Independent Component Analysis (ICA) is a method for
tempora and spatial signd extraction [Herault 1986, Comon
1994]. The general form of the method is describe in Eq (1),
where X isthe signal mixturearray, W isthe unmixing matrix
and S isthe estimated source single array.

S=W X @)

Many of the previously described methods involve a further
transformation of S by g(S) based on a model probability
density function (pdf). Inthese methods, thereisasearch for a
unmixing matrix W is that maximizes the entropy of the
sysem [Bell & Sgnowski 1995] or maximizes the likdihood
estimate to a give model (see figure 1). Theactud pdf of the
source signd is not known; however, these techniques work if
the model pdfs are an approximation to the source signal pdfs
[Cardoso 2000, Amari 1998].
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Figure 1. Independent component analysis where X isan m x n
array of signal mixtures, W is a m x m weight matrix (unmixing
matrix), S is the estimated source signals, and Y is the signal after
transformation g(S) which is based on the model pdf of the source
<sianal.

Other forms of ICA have been reported which do not rdy on
model pdfs and instead involve the direct minimization of the
mutual information or other cost function between the estimated
source signalsin S [Hyvarinen 1997, Almedia 2003, Stogbauer
2004]. In some techniques the requirement of true
“independence” between the signalsis replaced with the goal of
separating mutually corrd ated signals, i.e. separating statistically
“dependent”’ signals [ Almedia 2003]. The mutual information
(M) criteria can be defined for two discretesignals A and B in
Eq (2) [Clover & Thomas 1991] , where pag representsthejoint
histogram distribution and p, and pg are the marginal
distributions. In Eq 2, A and B would represent two different
rows within matrix S. The totad MI would then be the sum of
Misfor al possible combinationsof rowsin S.
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The goa of this paper was to see if the totd mutua
information between the estimated source signals could be
directly used as a cog function to optimize the search for the
appropriate unmixing matrix W. To evaluate the behavior of
the MI as a cost function, the optimization was performed in
polar coordinates rather than in the cartesian coordinates. The
polar coordinates allow a plot of the MI over a range of
angular rotations for each final parameter showing the
convergence or non-convergence on a global minimum. In
addition, the effect of histogram bin size on the behavior of the
MI cost function could be revealed. It is known the MI
function can be unsmocth causing problems in the search for
either it's maximum or minimum [ Maes 1997]. Known factors
which may affect the behavior of the M1 included the number of
histogram bins, histogram interpolation methods, and data
sample size [Maes 1997]. In this paper, the test data were
dynamic images where each pixel intensity varied over time.

MI(AB)= D, D pus(a.h)log
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2.METHODS

In Eq (1), each columnin X represent arandom variable x(t)
and each row in W represents a weight vector w [ Sone 2004].
If w are unit length vectors, then each element of S can be
conceptudized as the orthogonal projection of X on to each
the unit length w vectors in W. The proposed method
involves non-orthogonally rotating these unit length weight
vectors with the goal of minimizing the mutual information
(M) criteria cal culated between each source array row in S,

The general processing algorithm is shown in Fig 2. The



algorithm starts with a dimensionally reduced and whitened
form of the data X,,, which is a k x n sized matrix Eq (3),
where k is the number of selected principa componentsand n
is the number of data vectors. The preprocessing involves
principa component analysis (PCA) to obtain the k largest
eigenvaues (L) and corresponding k eigenvectors (®) of X'.
ICA requires a zero mean vector, so preprocessing with PCA
was also performed assuming a zero mean as describe by
(Naganawa 2005). In Eq (3), A™? isak x k diagonal matrix
containing the inverse sguare roots of the eigenvalues to
whiten the data The value of k (number of principa
component selected) is an operator determined value based on
a visual assessment of where the plot of the cumulative
vaiance hasthe largest change.
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The initid conditions are then determined by searching for
the k largest vectors which have unique directions. This
search can be rapidly accomplished by first reverse sorting the
column vector lengths in X, and then selecting the vectors
which show a significant change in vector direction from the
prior vector, correlation of less than 0.4. This subset of k
selected column vectors is used to create X; which
approximates the apex positions that are sought after in factor
analysis [DiPaola 1982] (Fig 28). The matrix inverse of X:
provides the initid unmixing matrix W, which conssts of k
vector rows we with unit length (Fig 2b). In the optimization
portion of the agorithm, each w, weight vector row is
individually rotated with k parameter angles within © and then
reformed to create a new unmixing matrix W (Fig 2c). The
matrix © represents a k x k sized matrix condsting of k
parameter angles for thek weight vector rows in W,
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Figure 2. General processing agorithm of ICA using polar
coordinates 0. &) find k column vectors in X,, which approximate
the apices in factor analysis. b) matrix inversion to get initia
weight vectors w, (rowsin W,). ¢) using R, orthogonally transform
each w, separately to create W. d) transform X, with the
unimixing matrix W. e€) calculate total Ml;, sum of MI between
eachrow in S f) Obtain new 8. g) Generate Givens rotationsR to
reapply to each ws.

The actud orthogonal rotation of each wg in k dimensonal
space was accomplished by generating an orthogonal rotation
matrix R; for each wy, where j indexes arow in Wo, (Fig 2g).
Each R, matrix itself is the product of k Givens rotations G;
which are the counter-clockwise orthogonal rotations around
each of the k principal component axis [Golub 1996], Eq (4).
R = Gj1Gj2....Gjk wherej =1 tok 4
The elementsin each G;; matrix consist of only cos(®), sin(6),
sin(6;), with the remaining diagonals set to one, and the

remaining elements set to zero. Theindex i rangesfrom 1to k
to cover the k rotetion parameters in 0 associated with each
W, In the agorithm, once the number of principal
components (k) was defined by the user, the elements of all
the Givens rotetions were coded as look up tables of sine and
codgne functions or congants (0O or 1) to improve
computational speed. The new unmixing matrix W can now
perform a non-orthogonal transformation of the data X,, to
obtain S(Fig 2d).

The MI cost function was calculated by Eq (2), where the
MI between all k axes (i.e. rows) in S were totded (Fig 2€).
The search for the minimum MI was performed by the
Nedder Mead downhill simplex algorithm [ Neadler 1965]
where the parameters of the optimization are the k x k angular
rotations in @ (Fig 2f). Theinitial set of parameter consisted of
random values ranging from -2 to +2 angular degreesfrom the
initid directions of w, For each iteration, there is the
generation of a new parameter matrix © whichisapplied to the
rows of W, to generate anew W, which then transform X,, to
anew S, which then provides a new MI value cost function
(Fig 2e). The agorithm iterates to a minimum MI with the
stopping criteria where the M| values and each parameter
value in 0 changes by less than 0.01 percent. At convergence,
a final parameter matrix 6; and its corresponding unmixing
matrix W; were saved. W; alows the generation of properly
scded signds P and parametric | CA images by performing the
inverse of the transformation matrices Eq (5), where S, isak
x k sized diagonal matrix containing the maximum values of
each row of S from W; x X,. The k rows in P are the
independent or “pure” vectors in the units of the original data
X. The entire agorithm was implemented in IDL 6.3 (ITT,
Boulder, CO).

P=W'S) Ao (5)

Dynamic images (128 x 128 x 30 time frames) containing
time varying signal and random noise were created to test the
software. Dynamic test image #1 (Fig 3) consists of three
regions. In the region 1, the image pixel intensity in of
counts/pixel/sec is proportional to the measured concentration
of radioactivity in blood after intravenous bolus injection of
the radiopharmaceutical 18F-fluorodeoxyglucose (FDG) in a
human. In regions 2 and 3, the image pixédl intensities are
simulated to be proportiona to the time varying tissue
concentration of radioactivity in the normal human liver and
malignant tumor, respectively, by tracer kinetic modeling
[Hoh 1996]. The vectors x(t) were generated by taking the
time varying pixel intensities for each spatial location within a
user drawn rectangular region of interes. The number of data
vectors anayzed, x(t), could be increased by bilinear
interpolation within the rectangular region of interest on the
image in each time frame. Random Gaussian type noise was
added to each element in x(t), where E is the output of the
random Gaussian IDL function RANDOMN, Xma iS the
maximum value in the X, and b is the user set percent noise
level, Eq (5). Thevaue b was set to 5% in both dynamic test
images.

noise = (E X b )/100 5)
3. RESULTS

The effect of the number of joint histogram bin sizes (32 x



32, 64 x 64, 128 x 128, 256 x 256) on the tota mutual
information (MI) from a data set condsting of 4484 data
samples (i.e. 4484 x(t) vectors) isshownin (Fig4). TheMlis
plotted varying all parameter angles 6 simultaneously from -
90° to 90°. The plot shows that there are locd minimum
which are rdlatively close (+ 20° -30°) to the global minimum.
These minimum appear to be less deep when the number of
histogram bin sizes increases. Even with the 256 x 256 bin
size there are still persistent local minima. Another interesting
finding is that near the global minimum (+10°), the M1 cost
function ‘appears relatively well behaved.

A recalculaion and replot of the totd MI with a finer
resolution, from -10° to +10°, shows that the higher bin size
(256 x 256) reduces the “smoothness’ of the M1 function (Fig
5a). The true global minimum can be in error and the lower
bin sizes (128, 64 and 32) shows that it may be 1/2° off.
Reanalyds with a distance weighted interpolation method as
describe by Maez to smooth out the MI function is plotted
over the-10° to +10° and shows no visible improvement in the
MI function (Fig 5b).
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Figure 3. @) simulated time activity curves of plasma (1), normal

liver (2), and tumor (3) after bolus injection of FDG. b) dynamic

test image#1 with added noise composed of the three region where

the pixel intensitv values varv defined bv the curvesin (a).

Increasing the number of data samples analyzed by a factor
of 4 (N=17936) by bilinear interpolation of the original image
pixels, provides a smoother M| function when calculated with
the 256 x 256 histogram bins (Fig 6). Also, al bin sizes
appear to show the same global minimum at zero.

The complex behavior of the M1 function isshownin Fig 7.
The totd MI is plotted for each parameter angle as it is
individually changed from -90° to +90° while the other
parameter angles are held constant.

The array of independent source vectors (or more
appropriately, the least dependent source vectors) P, calcul ated
in Eq (5), isshown in (Fig 8). Images of the “independent”
components were generated by rescaling each value within a
row of matrix S to a fraction of its row maximum value (Fig
8.1-3) and then assigning this value as the spatial intensity
value This value will range from 0 to 1 and is analogous to
the method of creating factor images in factor analysis.

Dynamic test image #2 contains a linear mixture of pixel
time activity curves and is shown in (Fig 9). Only the bottom
edge, top left corner, and top right corners have pure source
vectors of plasma, liver, and tumor, respectively.
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Figure 4. Effect of histogram bin sizes (32 x 32), (64 x 64), (128 x
128), and (256 x 256) on the total mutual information (MI;) where
all parameter angles are simultaneously rotate from -90° to +90°.
Note: more local minimums (arrows) when bin sizeis less than 256
x 256
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Figure 5. Effect of histogram hin sizes (32 x 32), (64 x 64), (128 x

128), and (256 x 256) on the total mutual information (MIt) where
all parameter angles are simultaneously rotate from -10° to +10°. a)

without interpolation, b) with distance weighted histogram

interpol ation.
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Figure 6. The cost function becomes more smooth with higher
number of data samples N= 17936 ascompared to 4484 samplesin
Figures4 and 5.
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Figure 7. Total mutua information (MIl;) where each parameter

angle is orthogonally rotated individually from -90° to +90°.
Histoaram hin size was sat to 256 x 256 hins
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Figure 8. Comparison of ICA extracted curves (solid lines) to
origina curves (data points) and th eir associated component images
oenerated from dynamic test image #1.

For the second dynamic test image, there are large and deep
local minima in the MI, plot when the parameter angles are
simultaneously changed from -90° to + 90° (Fig 10). The

minima persist even with a high number of data samples
(N=40356). The effect of rotating each parameter angle
individualy is shown in (Fig 11).  Both plots show that the
correct global minimum is achievable if the initid parameters
arewithin 10° of the global minimum.

Figure 9. Dynamic test image #2, showing image frames at times
0.7, 15, 3.0, 16, 36, and 60 minutes (a thru f, respectively)
containing plasma curves aong the bottom row of pixels (1),
normal liver in top left corner pixel (2), and tumor in top right
corner pixel (3). Pixel within the phantom are a summed
combination of intensities based on their inverse linear distant from
their bottom edae or corners.

Thethree “independent” component images generated from
the analysis of dynamic test image #2 show the original
mixing pattern used to create the dynamic image (Fig 12).

The IDL6.3 software was run on a dual processor Athlon
1.79 GHz PC with 4 GBs of memory running Microsoft
Windows XP. A multi-dimensona optimization involving
three independent components (i.e. 9 rotation parameters) with
17936 data vectors was completed within 2 minutes The
Nealder Mead simplex method was implemented for the cost
function minimization since it did not require function
derivatives and the behavior of the mutual information cost
function was known to be erratic. A more efficient gradient
based optimizer could be used if theinitid conditions are close
to theglobal mini mum.
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Figure 10. Effect of histogram bin size on total mutua information
(MIy) where all parameter angles are simultaneously changed from -
90°to +90°for dynamic test imace#2.
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Figure 11. Plot of total mutua information (MI;) where each
parameter angle is orthogonally rotated individually from -90° to
+90° for dynamic test image #2. Histogram bin size was set to 128
x 128 bins.

Figure 12. ICA component images show the origina mixing
pattern used to create dynamic test image#2.

4.DISCUSS ON

With the dynamic image data tested, it appears that the
direct minimization of the mutual information criteria for
independent component analysis is feasible in polar
coordinated but is highly dependent on the selection of the
initid optimization parameters. These initid parameters,
which represent the direction of the ICA weight vectors in
multidimensional space, need to be within +10° of the global
minima due to the exigence of deep minima just outside of
this range. Using a high number of histogram bins in
calculating the mutual information criteria reduces some of
these minima but may not eliminate al deep local minima as
was seen in the second dynamic test image with ahigh level of
spatid mixing.

On the other hand, a high number of histogram bins
(N=256) reduced the smoothness of the MI cost function
when there was insufficient data samples and did not improve
with a technique of distance weighted interpolation [Maes
1997]. Unlike the MI function applied in image co-
registration, small changes in the angular parameters do not
create large changes in the joint histogram of the MI
calculation. Thetotal MI function became smoother when the
number of datavectors wasincreased by afactor of 4 to 17936
by bilinear interpolation of the original image pixel data
Interegtingly, the lower bin sizes could be used if the initia
parameters are close to the final solution, i.e. within +10° of

the global minimum.

The method for finding the initial conditions was based on
the assumption that the source signds have higher signal
amplitude compared to the corrupting noise. This alows the
search for “unique” signd vectorsin the PCA space that have
“new” directions. The matrix inversion of these unique signal
vectors then provides the initid ICA weight vector directions
for further optimization. This method obviously will not work
if theamplitude of the noise is equivalent or higher than that of
the desired source signals.  An alternative approach, to find
the initid weight vectors, would be a polar “grid” search from
-180° to +180°% however, this becomes computational
expensive when dealing with higher dimensions.

By setting all the weight vectorsin W to the unit length of 1,
there is a reduction in the degrees of freedom for each weight
vector by one, i.e each weight vector's direction is fully
defined by k-1 angle parameters, (where k is the number of
principd components). For the two dynamic test images used
in this analysis, the over parameterization (k parameters x k
weight vector rows), did not lead to problems with parameter
convergence.

The algorithm was implemented to handle any number of
data dimensions within the limits of IDL’saccess of computer
memory. A faster numerical optimization other than the
Nealder Mead simplex could be used if the initial conditions
are close to the global minimum. In addition, the Givens
rotations can be paralelize once the number of principa
components of the analysis have been defined.

5. CONCLUSIONS

The method described in this paper shows that minimization
of the mutual information can be performed using polar
coordinates. No a prior information or objective function was
needed, except for an estimate of the number of underlying
component signds in the mixture. The mutual information as
a cog function can be unpredictable except near the global
minimum (within + 10°). The function can have local minima
which are dependent on the number of histogram bin sizes
used in the calculation of the M1 criteria and in the number of
data samples used in the analysis. Near the global minimum,
lower histogram bin sizes may be use
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