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Abstract 
 

This paper proposes a monitoring and remote control system 
based on human localization in informationally structured 
space using a sensor network. First, we explain 
informationally structured space, robot partners, remote 
control system for home appliances, and sensor networks for 
human motion measurement developed in this study. Next, 
we apply a spiking neural network to extract a person from 
the measured data by the sensor network. Furthermore, we 
propose a learning method of spiking neural network based 
on the time series of measured data. Finally, we discuss the 
effectiveness of the proposed methods through experimental 
results in a living room. 
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1. INTRODUCTION 
Recently, many home appliances such as audio players 
television, air-conditioner, lights, and fans have been 
controlled by infrared remote controllers. As a result, there 
are many remote controllers in a house. It is troublesome for 
elderly people to use many remote controllers in a living 
room, because each remote control has the different layout 
and functions of buttons. Furthermore, elderly people 
sometimes forget to turn home appliances off. Therefore, the 
monitoring system of states inside the house is helpful for 
them. On the other hand, various types of personal data 
assistant (PDA) devices, personal organizers, and smart 
phones have been developed to access the personal 
information and Internet information until now. Such a 
device can be used to control home appliances. However, 
the device is unfamiliar to elderly people, and it takes much 
time to choose the menu of the target home appliance from 
the candidates, as the number of home appliances increases 
in a house. Furthermore, the remote monitoring of elderly 
people living alone in a house is essential for their family. 
We proposed the concept of informationally structured space 
[10] (Fig.1). The environment surrounding people and 
robots should have a structured platform for gathering, 
storing, transforming, and providing information. The 
structuralization of informationally structured space realizes 

the quick update and access of valuable and useful 
information for users. Furthermore, we should consider the 
accessibility to required information, especially, human 
interface is very important to use devices [1,2].  
 In this paper, we propose a universal remote control 
system of home appliances in the informationally structured 
space. We use Apple iPhone for the device for remote 
control of home appliance, because iPhone can provide the 
multi-modal communication interface with users [20]. The 
iPhone can estimate the posture and direction of the device 
itself by the internal compass and accelerometer. In order to 
use iPhone as a remote controller, the proposed system must 
estimate the location of the user and the aim of the user. 
Therefore, we discuss the on-line estimation method of 
human location in the informationally structured space based 
on sensor networks. Next, we apply a spiking neural 
network [11-13] to localize human position, and to learn 
temporal relationship of behaviors based on the firing 
patterns. Finally, we show experimental results, and discuss 
the effectiveness of the proposed method. 
 This paper is organized as follows. Section 2 explains the 
robot partners, data flow in the informationally structured 
space, remote control for home appliances, spiking neural 
network for human localization. Section 3 shows 
experimental results of the proposed method, and Section 4 
summarizes the paper, and discusses the future vision of 
robot partners. 
 

2. INFORMATIONALLY STRUCTURED SPACE 

Robot Partners 
We can use three different types of robot partners from the 
interactive point of view (Fig.2). One is a physical robot 
partner. We can interact with the physical robot partner by 
using multi-modal communication like a human. The next 
one is a pocket robot partner. The pocket robot partner has 
no mobile mechanism, but we can easily bring it everywhere 
and can interact with the robot partner by touch and physical 
interface. The last one is a virtual robot partner. The virtual 
robot partner is in the virtual space in the computer, but we 
can immerse into the virtual space, and interact with it 
through the virtual person or robot. The interaction style of 
these three types of robot partners is different, but they share 



the same personal database and interaction logs, and can 
interact with the person based on the same interaction rules 
independent from the style of interfaces. 
 

 
Fig.1. The concept of informationally structured space 

 
 

 
Fig.2. Interaction with robot partners 

 
We developed two types of physical robot partners; a 

mobile PC called MOBiMac and a human-like robot called 
Hubot in order to realize the social communication with a 
human [14-17]. Each robot has two CPUs and many sensors 
such as CCD camera, microphone, and ultrasonic sensors. 
Therefore, the robots can conduct image processing, voice 
recognition, target tracing, collision avoidance, map building, 
imitative learning, and others [5,14-20]. The basic behavior 
modes of these robots are human tracking, human 
communication, behavioral learning, and behavioral 
interaction. The communication with a person is performed 
by utterance as the result of voice recognition and gestures 
as the result of human motion recognition. The robot 
integrates the above behaviors according to the 
environmental conditions based on the multi-objective 
behavior coordination. The multi-objective behavior 
coordination integrates outputs of several behaviors 
according to the time-series of perceptual information.  

We have used iPhone and iPod touch as a pocket robot 
partner, because we can easily use the touch interface, 
accelerometer, compass, and GPS in the program 
development. This device can be used for tele-operation of 
robots and remote monitoring in addition to personal data 
assistance.  

 The basic capabilities common to physical, pocket, and 
virtual robot partners are human recognition, object 
recognition, mining of personal data, and learning of 
interaction patterns based on image processing and voice 
recognition. The data used for these capabilities are stored in 
the informationally structured space, and a robot partner can 
access and update the data through the wireless network. 
 

Data Flow in Informationally Structured Space 
Figure 3 shows the data flow in the developed system based 
on informationally structured space. The developed system 
is divided into four main components; (1) database 
management server PC, (2) physical robot partners, (3) 
environmental systems, and (4) pocket robot partners as 
human interface systems. The environmental system is based 
on a wireless sensor network composed of sensors equipped 
with wall, floor, ceiling, furniture, and home appliances. 
These sensors measure the environmental data and human 
motions. The measured data are transmitted to the database 
server PC, and then feature extraction is performed. Each 
robot partner can receive the environmental information 
from the database server PC, and serves as a partner to the 
person. Furthermore, the user interface system is used for 
the person to access the environmental information through 
pocket robot partners. Here the learning infrared controller is 
used for the control of home appliances such as 
air-conditioner, TV, and lights. 
 
 

 
Fig.3. Data flow in informationally structured space 

 



   
(a) CUI mode                  (b) GUI mode 

Fig.4. Interface modes of Universal remote controller based 
on pocket robot partner 

 

 
Fig.5. Universal remote controller for home appliance 

 

Remote Control of Home Appliances 
In general, there are many remote controllers for home 
appliances in a house, and the layout of buttons in 
controllers is different. Therefore, one universal remote 
controller for controlling all home appliances is reasonable 
and useful for people. The pocket robot partner is used for 
the multi-modal communication interface to control home 
appliances. iPhone provide a person with human interfaces 
for voice, tough, and gesture. Figure 4 shows two modes of 
touch interface based on character-based user interface 
(CUI) and graphical user interface (GUI). Originally, the 
term of CUI is used as the interface done by only texts, but 
we use the term of CUI in this paper.  

In the CUI mode, the menu of controller is composed of 
the name of home appliance, control of power supply and 
adjustment from the top to bottom. If a person turns the 
iPhone to a home appliance, the menu of home appliance is 
automatically changed. The color and size of fonts and 
buttons are designed according to the results of 
questionnaire (see Fig.4 (a)). Because the position of the 
person is localized by the sensor network, the direction of 
the iPhone can be detected by the compass and 
accelerometer in the iPhone (Fig.5). If a home appliance is 
turned on, the menu is changed from the combination of 
“turn on” and “turned out” to that of “turned on” and “turn 
out”. In general, the switch for power supply is only one in a 
standard remote controller, but elderly people sometimes 
push the button twice owing to the shaking of a finger. 

Therefore, we divide the switch for power supply into two 
buttons. 
 Furthermore, in the GUI mode, the user can directly touch 
a home appliance in the simulator to turn on/off its 
corresponding home appliance. If the home appliance is 
turned on, its color in the simulator is brightened. In this 
way, the user can easily understand the state of home 
appliance in the GUI mode. However, it is difficult to adjust 
the state of home appliances, e.g., the temperature of air, and 
the channel and volume of TV in the GUI mode. Therefore, 
we intend to incorporate the small menu for the adjustment 
of home appliances in the GUI mode like augmented reality 
environments as a future work. 
 

Sensor Network for Human Motion Measurement 
We use a 3D distance image sensor, SR-3000 (Fig.6 (a)) 
developed by MESA Corporation. SR-3000 is a range 
camera for measuring 3-dimensional distance up to 7.5 [m] 
based on time-of-flight principal by using infrared light 
source, and outputs the measured data by a USB2.0 interface. 
The output data is composed of distance data as a Cartesian 
axis and luminance data with a spatial QCIF resolution (176 
* 144 pixels). Furthermore, we use 3-axis Jyro to measure 
human behaviors. The wireless sensor device called Sun 
SPOT (Sun Small Programmable Object Technology) with 
3-axis Jyro is included in a block (Fig.6 (b)). Sun SPOT is 
small, wireless, battery-powered device powered by a 
specially designed small-footprint Java virtual machine, 
called Squawk, that can host multiple applications 
concurrently, and requires no underlying operating system. 
  

                   
(a) 3D distance image sensor  (b) Wireless sensor device 

Fig.6. Measurement system for human behaviors 

Spiking Neural Network for Human Localization 
Various types of artificial neural networks have been 
proposed to realize clustering, classification, nonlinear 
mapping, and control [11-13, 20-22]. Basically, artificial 
neural networks are classified into pulse-coded neural 
networks and rate-coded neural networks from the viewpoint 
of abstraction level. A pulse-coded neural network 
approximates the dynamics with the ignition phenomenon of 
a neuron, and the propagation mechanism of the pulse 
between neurons. Hodgkin-Huxley model is one of the 
classic neuronal spiking models with four differential 
equations. An integrate-and-fire model with a first-order 
linear differential equation is known as a neuron model of a 
higher abstraction level. A spike response model is slightly 
more general than the integrate-and-fire model, because the 
spike response model can choose kernels arbitrarily. 
 One important feature of pulse-coded neural networks is 
the capability of temporal coding. In fact, various types of 



spiking neural networks (SNNs) have been applied for 
memorizing spatial and temporal context. We use a simple 
spike response model to reduce the computational cost. The 
internal state hi(t) is calculated as follows; 
   

  
hi (t) = tanh hi

syn (t) + hi
ext (t) + hi

ref (t)( )            (1) 
Here hyperbolic tangent is used to avoid the bursting of 
neuronal fires, hi

ext(t) is the input to the ith neuron from the 
external environment, and hi

syn(t) including the output pulses 
from other neurons is calculated by,  

   
  
hi

syn (t) = γ syn ⋅hi (t −1) + wj ,i ⋅hj
PSP (t)

j=1, j≠ i

N

∑         (2) 

Furthermore, hi
ref(t) indicates the refractoriness factor of the 

neuron; wj,i is the parameter of a weight coefficient from the 
jth to ith neuron; hj

PSP(t) is the presynaptic action potential 
(PSP) approximately transmitted from the jth neuron at the 
discrete time t; N is the number of neurons; γsyn is a temporal 
discount rate. When the internal action potential of the ith 
neuron is larger than the predefined threshold, a pulse is 
outputted as follows; 

   
  
pi (t) =

1 if hi (t) ≥ qi

0 otherwise

⎧
⎨
⎪

⎩⎪
            (3) 

where qi is a threshold for firing. Furthermore, R is 
subtracted from the refractoriness value in the following, 

   
  
hi

ref (t) =
γ ref ⋅hi

ref (t −1)− R if pi (t −1) = 1

γ ref ⋅hi
ref (t −1) otherwise

⎧
⎨
⎪

⎩⎪
      (4) 

where γref is a discount rate and R>0.  
 The presynaptic spike output is transmitted to the 
connected neuron according to PSP with the weight 
connection. The PSP is calculated as follows; 

   
  
hi

PSP (t) =
1 if pi (t) = 1

γ PSP ⋅hi
PSP (t −1) otherwise

⎧
⎨
⎪

⎩⎪
       (5) 

where  γ
PSP  is the discount rate (0< γ

PSP <1.0). Therefore, the 
postsynaptic action potential is excitatory if the weight 
parameter, wj,i is positive. If the condition 

  
hj

PSP (t −1) < hi
PSP (t)  

is satisfied, the weight parameter is trained based on the 
temporal Hebbian learning rule as follows, 
   

  
wj ,i ← tanh γ wgt ⋅wj ,i + ξwgt ⋅hj

PSP (t −1) ⋅hi
PSP (t)( )    (6) 

where γwht is a discount rate and ξwgt is a learning rate. 
 We apply SNN to the human localization based on 
measured data of the sensor networks. Basically, each 
furniture or equipment is attached with a sensor. If the 
measured value is changed large, then the difference from 
the base value is used as the inputs to a spiking neuron in the 
following; 

  
hi

ext (t) = min vi (t) −Vi( )2
,1{ }        (7) 

where   vi (t) is the measured values at t and  Vi  is the base 
value of the ith sensor. Here, the input value to the spiking 
neuron is fuzzified. Furthermore, the base value is updated 
in case of accelerometer equipped with the movable objects 
such as chair or bad, 
   Vi ← (1− ξ sen ) ⋅Vi + ξ sen ⋅vi (t)        (8) 

where  ξ
sen  is the learning rate to adjust the base value to the 

current situation of the movable objects. If the neuron is 
fired, this means that a person uses or moves its 
corresponding furniture. In this way, the firing pattern 
indicates the time-series of human position or behavior in 
the room. If the position of each sensor is not localized, the 
simultaneous firing of sensor neuron and human walking 
indicates the high possibility that the person uses the 
furniture or equipment. Based on this discussion, we can 
assume the position of the person as that of the ith furniture 
or equipment, (

  
Xi,1

S ,
  
Xi,2

S ).  

  
Xi,k

S ← (1−α S )Xi,k
S +α S ⋅ x̂k if pi (t) = 1   (9) 

where  α
S  is the update rate;   x̂k  (k=1,2) is the human 

position estimated by a steady-state genetic algorithm using 
the 3D distance image sensor [20]. Furthermore, if the PSP 
of the estimated human position is less than the predefined 
threshold and if the temporal difference of human position is 
also small, then the position of the furniture or equipment 
nearest with the current position is used as the human 
location.  

Figure 7 shows an experimental result of human 
extraction in the bed by the human detection in SSGA where 
(a) is the original illumination image, (b) is the original 
distance image, (c) and (d) are the plotting results of the side 
and front views, respectively, (e) is the reliability map for 
differential extraction, and (f) is the possible human area 
based on the differential extraction and the search result of 
SSGA for human detection depicted as a red color. The 
human position is calculated by the average of 3D positions 
of pixels corresponding to the red area.  
 

 
(a) Illumination image  (b) Distance image 

   
(c) Side view of 3D space  (d) Front view of 3D image 

 

 
(e) Reliability map  (f) Human search by SSGA 

Fig.7. Image processing result of the extraction of the person 
in the bed [20] 

 



 
Fig.8. Presynaptic action potential and PSP over time 

 

 
Fig.9.  The transition of human position by SNN 

 

 
(a) Entrance 

 

 
(b) Walking 

Fig.10. The visualization of human location on the iPhone 
and iPod touch in the remote observation system 

 

3. EXPERIMENTAL RESULTS 

This section shows several experimental results. We use the 
experimental example of a living room where the 
illumination sensors are attached with the fridge and cabinet, 
and the accelerometers are attached with the chair and bed 
shown in Fig.3. The number of spiking neurons is 6. These 
neurons are used for measuring the states of (1) entrance 
door, (2) chair, (3) bed, (4) cabinet, (5) fridge, and (6) 

walking. The human walking is extracted by the 3D distance 
image sensor [20]. 

Figure 8 shows experimental result of SNN where the 
green line is the input to each spiking neuron; the red line 
indicate the internal state (presynaptic action potential) of 
the upper figure, and the red line in the lower figure is the 
value of PSP in each neuron to measure the state of furniture 
or equipment. Each neuron fires as the state of internal state 
increases according to the sensory input calculated by the 
difference from the base value in each sensor. Figure 9 
shows the estimated location of the person in the room. The 
person entered from the door, opened the cabinet, and took 
out a drink. After that, the person sat down the chair, and 
used the pocket robot partner to control home appliances. 
Finally, the person went to the bed (Figs.10 and 11 (4)). 

 

 
Fig.11. The state of home appliances 

 

     
         (a) Light           (b) Air-conditioner 

Fig.12. Operation results of universal remote controller 
based on pocket robot partner 

 
Figure 10 shows the visualization of the human 

localization on the iPhone and iPod touch in the remote 
observation system. When the person goes home, the sensor 
in the entrance door fires. As a result, the person appeared in 
the entrance of the simulator (Fig.10 (a)). When the neuron 
corresponding to the walking fires, the person starts walking 
in the simulator according to the position detected by SSGA 
(Fig.10 (b)). Because the person is displayed as an abstract 
human model in the simulator, the privacy of the person can 
be protected. In this way, the sensing device of sensor 
networks and iPhone are connected through the 
informationally structured space. 
 Figure 11 shows the change of values on the state of home 
appliances. Figure 12 shows the operation result of universal 



remote controller using iPhone in the room. When the 
person enters in the room, the light is not turned on. After 
the person entered in the room, the person turned on the light 
and air-conditioner (Fig.11). As a result, the inside of the 
room is lightened up (Fig.12 (a)), and the wind is drawn 
from the air-conditioner (Fig.12 (b)). In this way, while the 
person can easily control home appliances, the family living 
far away from the person can understand the situation of the 
living room in the remote care. 

4. SUMMARY 

This paper discussed the applicability of informationally 
structured space to remote observation and remote control of 
home appliances. Next, we developed universal remote 
controller using iPhone based on GUI and CUI modes. 
Furthermore, we developed a human localization method 
based on sensor network. We applied a spiking neural 
network to extract the human position based on the sensor 
network. Next, we proposed the learning method of spiking 
neural network based on the time series of measured data. 
Experimental results show the effectiveness of the proposed 
methods. The developed system is available for the 
observation of human location in a living room. Furthermore, 
the experimental results show that the universal remote 
controller is useful and helpful for people to control home 
appliances. 
 As a future work, we intend to combine the voice 
recognition and visual perception of the robot partners to the 
total system to realize natural interaction and multi-modal 
communication with people. Furthermore, we will use other 
sensing devices to extract human state effectively. 
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