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ABSTRACT

In this paper, we present the performance analysis of an ex-
isting parallel fluid dynamics code developed at the Chair
for Computation in Engineering at Technische Universität
München. Using the German national supercomputer HLRB
II (SGI Altix 4700), performance factors were measured in
order to discuss implications from the underlying hardware
and to explore possible optimisation strategies.
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1. INTRODUCTION

Nowadays, thermal comfort assessment in early design
stages of buildings and vehicles is a very important issue [9].
Evaluating the indoor climate in early design phases may
not only indicate how comfortable human subjects might
feel [3], but can furthermore economise valuable resources
such as money and construction time. Issues of local ther-
mal effects such as asymmetrical long wave radiation and
air drafts can be identified and, hence, dealt with before
the actual construction takes place in order to shorten the
construction process and prevent from expensive subsequent
changes.
In this paper, we focus on the performance analysis of a
computational fluid dynamics (CFD) code, using a Lattice-
Boltzmann-Method (LBM) that was implemented in order
to evaluate local thermal effects of air drafts by computing
the velocity field and temperature distribution in a closed
environment [4, 10]. As realistic simulations – yielding to
reliable physical results – entail a huge amount of computa-
tional effort, a parallel implementation of the LBM code is
inevitable.
In a first step, typical properties of the parallel code were
profiled and analysed running on more than 1000 nodes on
the German national supercomputer HLRB II (SGI Altix
4700) in order to identify (communication) bottlenecks and
weak aspects of the parallelisation.
Based on these results, we propose modifications for perfor-
mance optimisation on the one hand as well as for hardware-
awareness on the other hand to perfectly suit the underlying

Figure 1: original geometry of the computational domain repre-
senting a part of an engine room in a ship containing four oil sepa-
rators (highlighted)

hardware architecture.
We close the paper with an outlook to our long-term objec-
tive of coupling the code with a numerical thermal manikin
[9] for interactive computational steering purposes of ther-
mal comfort assessment. In case of an interactive computa-
tion, the problem size will of course be smaller, in order to
have a real time response of the simulation.

2. PARALLEL CFD CODE

Computational Fluid Dynamics
As numerical method for solving the physical relations of
turbulent convective airflows, represented by incompressible
Newtonian fluids, the Lattice-Boltzmann-Method (LBM) is
used. Unlike the classical method, which discretises the
basic hydrodynamical equations (i. e. the Navier-Stokes-
Equations), the Lattice-Boltzmann-Method is based on the
concepts of statistical physics. It makes use of a first or-
der finite difference approach in space and time resulting in
a relatively simple scheme regarding implementation. To
gain additional numerical stability, the so called multiple-
relaxation-time (MRT) model by d’Humières [2] was used,
and the simulation of convective airflows was achieved using
the hybrid thermal model proposed by Lallemand & Luo [7].
For details refer to [4, 6, 10].



spatial discretisation amount of
x y z voxels [106]

(a) 100 37 50 0.185
(b) 200 75 100 1.500
(c) 300 112 150 5.040
(d) 400 150 200 12.000
(e) 500 187 250 23.375

Table 1: geometric discretisation of the computational domain

Computational Domain
Compared to the classical approach, the computational do-
main needs not necessarily to be meshed as precisely as re-
quired for a finite volume or finite element approach. In fact,
it is sufficient to discretise the domain in the three spacial di-
rections x, y, z forming a uniform Cartesian grid composed
of voxels1. Applying this uniform discretisation, each voxel
knows in advance the neighbouring relations in terms of the
topological connections.
Furthermore, each geometry can be automatically converted
without user interaction into a computational domain com-
posed of a voxel geometry, whereas standard finite volume
or finite element meshes usually need to be postprocessed
after automatic generation by a specially trained engineer
knowing about possible complications arising from gaps or
overlaps in the final mesh, for instance.
The possibility of an automated domain generation leads to
another beneficial advantage: In order to evaluate the perfor-
mance of the code (which will be addressed in Section 3),
computational domains of different sizes can be generated
automatically. Table 1 gives an overview of some domain
sizes and their respective spatial discretisation.
The voxel generator takes an arbitrary geometry and maps it
to a uniform Cartesian grid with given dimensions using a
tree based algorithm described in [13]. Furthermore, it can
set the boundary conditions for the simulation.

Application
Figure 2(f) shows a part of the original geometry (depicted in
Figure 1), a separator used in ships to control the quality of
the engine’s lub oil. In large ships, ferry boats, or container
ships, e. g., it is ecologically and economically not possible
to change the lub oil like in cars for example. Therefore,
separators are used to clean the lub oil from dirt particles
and other obstructions. A small quantity of new oil is added
regularly, thus keeping the lub oil quality over the complete
lifetime of a ship in good condition.
These separators usually become very hot, arising the ques-
tion about the convective airflow inside the engine room
while the separators are running. If convective cooling is
sufficiently efficient, water cooling systems can be avoided,
thus saving money in the design process [11]. Figure 4

1a voxel is the three-dimensional equivalent to a two-dimensional pixel

(a) 0.185 (b) 1.500

(c) 5.040 (d) 12.000

(e) 23.375 (f) original

Figure 2: separator according to spacial discretisation of Table 1.
The labels display the overall amount of million voxels represent-
ing the size of the computational domain.

Figure 3: temperature distribution field through the hot separators
as result of a CFD simulation (side view)



Figure 4: temperature distribution field through the hot separators
as result of a CFD simulation (front view)
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Figure 5: strong speedup depending on the amount of CPU cores
used out of a range up to 2048

shows a computational result using a domain of 1.5 million
voxels after half a million timesteps of simulation.
Figures 2(a) to 2(e) show different discretisation steps used
for simulating the computational domain. It is obvious, that
finer discretisations lead to better physical results. The do-
main containing 185,000 voxels gives only a very coarse
description of the physical properties, whereas the domain
containing 12 million voxels gives a quite accurate result.

3. PERFORMANCE ANALYSIS

The above described code was mainly used on a small-scale
Linux cluster with maximum 16 processes. The first objec-
tive of the present paper was to port the code to the German
national supercomputer SGI Altix 4700 with a total number
of 9728 cores and 39 TByte (shared) memory of the entire
system and to evaluate the performance – at first – without
further optimisations. The results will be discussed in this
section.
To obtain an overview over the parallel benefits at differ-
ent simulation scenarios, several domain sizes using differ-
ent numbers of CPU cores were analysed. Simulations were
performed with a computational domain size ranging from
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Figure 6: strong speedup depending on the amount of CPU cores
used out of a range up to 128

approximately 185,000 voxels (type (a) in Table 1) up to 96
million voxels. Unfortunately, the results for a domain size
larger than 23 millon voxels could not be taken into account
for the strong speedup analysis, as it was not possible to get
reference measurements for the serial code due to the long
run time of this computation. An estimate of the overall time
for the serial computation run of the 96 million voxel domain
would be approximately 85 days.

Strong Speedup
For evaluating the performance of the code, a strong speedup
analysis was made. The speedup for p processes is computed
by dividing the measured time of the serial process (T1) by
the measured time using p processes (Tp):

Sp =
T1

Tp
. (1)

Strong speedup in this context means that the number of pro-
cesses is increased while the domain size remains constant.
At some point the performance of the code decreases, as
there is a growing part of communication overhead for the
rising amount of processes.
The strong speedup results for the domains in Table 1 are
depicted in Figure 5. The reference line indicates a linear
speedup which – rarely achieved – means the optimal case.
Obviously this is not reachable for the strong speedup due to
the above mentioned constant domain size. One can expect
that for all domain sizes a performance collapse is appearing
at some point.
Figure 6 gives a detailed view of the first part from Figure 5
in order to give a better impression of the speedup behaviour
at different problem sizes. Focussing on the domain contain-
ing 185,000 voxels, one can see in Figure 6 that this code
performs exceptionally well for 2 to 64 processes, where a
super linear speedup can be observed. This is mainly due to
cache effects. The domain chunks assigned to each process



 10

 100

 1000

 10000

 100000

 1e+06

 10  100  1000  10000  100000  1e+06  1e+07  1e+08

o
v

er
al

l 
w

al
lt

im
e 

[s
]

amount of voxels per cpu core [-]

Figure 7: amount of voxels per CPU core versus overall walltime

are small enough to fit (entirely) into the respective cache.
Hence, the cache-miss-rate decreases and the code performs
better than in the serial case, even with occurring commu-
nication. As soon as the amount of CPUs exceeds a certain
number of around 80 to 100 processes, the performance in
terms of speedup drops drastically. Here, the assigned do-
main chunks become to small, thus the processes communi-
cate much more than they compute, and a certain asymptote
of around 100 is reached (Figure 5).
Looking closer at the other domains, we observe the same
behaviour, except that the amount of processes, at which su-
per linear behaviour and performance drops occur, are differ-
ent. For the 1.5 million voxel domain, one can observe that
until the amount of processes reaches approx. 38, the sys-
tem is working with a lower rate than linear speedup. Here
the domain chunks are still too big to achieve a high cache
efficiency. As soon as the chunks get smaller, the cache ef-
ficient effects start to overwhelm the communication over-
head. This is observable in all curves, even if the 23 million
voxel example has not reached this state at 2048 processes
yet.
Figure 7 gives an estimate of the necessary computation time
for different domain sizes by comparing the amount of vox-
els per CPU core versus the overall computation walltime.
Walltime in this context implies the real time elapsed from
the beginning to the end of a job. Time measurements were
taken with the same settings on eight different domain sizes
with twelve different amounts of CPU cores to complete this
diagram in order to get an accurate estimation of the code’s
run time behaviour. Performance issues can be observed at
rates below 5000 voxels per CPU core where the walltime is
mainly consumed by the initialization and finalization of the
MPI processes distributed over several computing nodes.

Communication over Computation Ratio
The communication over computation ratio (CCR) is com-
puted in this paper by dividing the sum of pure communica-
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Figure 8: communication over computation ratio for 3 different
domain sizes

tion (and synchronisation) time T
(p)
com of all slave processes

p by the sum of the pure computation time of the application
T

(p)
app and the communication time:

CCR =

∑
p T

(p)
com∑

p T
(p)
com +

∑
p T

(p)
app

. (2)

The run times for the CCR depicted in Figure 8 were mea-
sured and interpreted using VAMPIR [8] (Visualization and
Analysis of MPI Resources).
Using a single process and running the code in serial mode,
there is no communication and thus the ratio is zero. Using
more processes, one can observe an increase in the commu-
nication over computation ratio induced by a higher com-
munication effort. In this case, the rate of increase seems
large due to necessary synchronisation rather than commu-
nication. The curves converge towards the value 1, as for
a high number of processes the communication entails too
much overhead, while the sum of all computation times stays
nearly constant in case of fixed domain sizes for the CCR
evaluation.
One can observe that the CCR drops for 185,000 voxels from
0.9 to 0.5 and rises again. This is mainly due to a quite spe-
cific reaction from the domain decomposition method used
in the code. For this specific amount of voxels per CPU
a quite ideal domain decomposition is existing which has
a rather good surface per volume ratio2 compared to other
amount of processes. Furthermore, one can observe that the
same behaviour exists for the domain size of 185,000 voxels
and 1.5 million voxels. The first peak in the 185,000 voxel
domain appears at approx. 5800 voxels per CPU while the
first one in the 1.5 million voxel domain turns up at approx.
5850 voxels per CPU. This indicates that this behaviour is
resulting from the code rather than the underlying architec-

2main matter for the communication when exchanging values at the do-
main boundaries with neighbouring process



ture, even if the architecture itself might have an influence
on this effect.
Further studies are necessary to determine whether some im-
provements can be made to prevent this rapid inclining of the
CCR or if an overall optimisation can be applied to reduce
this specific effect.

4. OPTIMISATION STRATEGIES

As the performance analysis showed, the parallel implemen-
tation of the CFD code has not yet reached an optimal de-
sign. In this section, we discuss possible optimisation proce-
dures, some of them already tested for the German national
supercomputer.
One optimisation strategy on the Altix is called hybrid par-
allel programming. Until now, the code is parallelised us-
ing purely explicit Message Passage Interface (MPI) paral-
lelisation. Another possibility would be to use an OpenMP
based parallelisation concept, where code structures such as
loops can be executed with several threads by adding so-
called compiler directives. A mixture of both approaches is
called hybrid parallelisation. The main structure of the al-
ready existing code is still communicating via MPI, while
internal loops of one MPI process can be parallelised using
OpenMP, which should suit the underlying shared memory
structure of the Altix quite well.
Unfortunately, tests with code modifications using a hybrid
parallel approach showed no run time improvement but a
rather dramatical rising in run time behaviour. An analysis
pointed out two major explanations for this behaviour: the
independent loops, which can be parallelised in the slave
computations are not very time consuming and lead to a
high ratio of initialisation time versus actual loop runtime.
The biggest, outermost loop in the slave process is formed
by the main time loop over all the time steps, which can-
not be parallelised by OpenMP due to dependency issues.
Another fact is that by using the OpenMP concept in the in-
dependent loops, the cache efficiency of the slave process is
drastically reduced. While fetching cache lines, the system
has to jump to different places in the computation domain
for different threads. If only one thread is used, the same
cache line can be re-used more often, thus the cache effi-
ciency increases and has a higher impact than the combined
computation power of two threads with low cache efficiency.
Hence, unless a complete remodelling of the code is done to
increase the overall efficiency with respect to hybrid parallel
programming, this scheme does not offer a suitable optimi-
sation strategy.
Other optimisation ideas involve a redesign of the computa-
tional loops. Therefore the theory of the Lattice-Boltzmann-
Method itself has to be evaluated with respect to possible
mathematical transformations in order to rewrite formula-
tions to increase efficiency, which is not the focus of this
paper, but can be found in [12].
To further increase efficiency, another method of domain de-
composition could be used. Until now, recursive bisection

of the computational domain was applied, which is quite
suitable for the Lattice-Boltzmann-Method with the under-
lying uniform Cartesian grid. Unfortunately, depending on
the domain geometry, there can be domain chunks contain-
ing a lot of ‘solid’ voxels where no computation is done
and which act only as boundary conditions. These domain
chunks will have obviously a very low performance due to
the fact that this computation node is merely waiting for the
others, as its computation work is not very time consum-
ing. In other words the domain chunk sizes per CPU node
could be optimised using load balancing strategies paying
the price of a non uniform distribution and a more complex
communication scheme, as the neighbourhood information
gets more difficult to manage like in the case of a uniform
Cartesian distribution. As this strategy would involve major
code changes, it was not tested in the scope of this paper but
is thought as a mere outlook. Especially for highly non uni-
form distributions space-filling curves are advantageous for
load balancing, as it has been shown with latest publications
such as [1, 5].

5. APPLICATION COUPLING

A long term objective is to couple a numerical simulation of
human thermoregulation with a CFD analysis. Thermoregu-
lation describes the ability of the human body to adapt to the
surrounding environment through means of active responses
like vasoconstriction and -dilatation, sweating or shivering.
Thermoreceptors at the skin and in other sensitive areas de-
liver values to the central nervous system which regulates
all responses and tries to keep the body in a state of thermal
neutrality. More information can be found in [9].
Doing a CFD computation, a human manikin in the com-
putational domain behaves now different than an inanimate
object like a piece of furniture, as these thermoregulatory as-
pects have to be considered. Here a bidirectional coupling is
necessary, given that the room has an influence at the body
and vice-versa. If the room is large compared to the body
size and for certain boundary conditions, the bidirectional
coupling can be neglected, and it is sufficient to compute an
unidirectional coupling from the room to the manikin model.
Stability issues of the coupling should not arise, as the hu-
man thermoregulation model is a quite inert model com-
pared to the fluid dynamics behaviour of the room. Other
problems as boundary treatments and exchange conditions
from the fluid solver to the thermoregulation model will need
thorough planning for a stable implementation. The code in
its present state is not directly suited for such a coupling,
as the slaves send data to the master process only in a very
large interval for post processing reasons. The thermoregu-
lation process, however, would need all the data from each
slave at each computation step in order to fulfil the coupling
conditions which might have a huge impact in efficiency, if
the code structure stays unchanged.



6. CONCLUSIONS

In this paper, we presented the performance analysis of a
parallel CFD solver based on a Lattice-Boltzmann-Method.
In different graphs, performance measurements and evalu-
ations were done to get an impression on the performance
of the given code. There is still a lot of room for improve-
ment concerning the communication over computation ratio
which should be addressed and analysed in more details in a
next step.
Hybrid parallel programming turned out not to be an option
in the case of the given code, even if it fits well for the un-
derlying architecture. Other promising optimisation strate-
gies were mentioned, as well as the focus to couple a human
thermoregulation model to a fluid computation of a room.
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