
Software Reengineering Based Security Teaching

Sam Chung
Computing & Software Systems

Institute of Technology
University of Washington

Tacoma, WA 98402
chungsa@uw.edu

Barbara Endicott-Popovsky

Center for Information Assurance and Cyber Security
University of Washington

Seattle, WA 98195
endicott@uw.edu

ABSTRACT

The problem of developing secure code is well known to high-tech
sector companies. Some, like Microsoft, have found it necessary to
establish ongoing security training for their developers to make up
for the absence of college-level, secure coding curriculum. This
research takes a unique, software reengineering-based, thread
approach. Curriculum modules are built around a concept such as
input data validation, encapsulation, errors, etc. A software
engineering case study is developed for each module that will
produce code the traditional way, without regard to security, then
re-engineer the code to transform it to include security concepts.
Going through the cases in this manner, will give attending faculty,
not only specific labs they can implement in their own courses, but
also an understanding of how to transform their own existing
assignments to incorporate secure coding practices.

Keywords: Secure Coding, 4+1 Views, 5W1H Based Re-
Documnetation Technique, Reverse Software Engineering,
Forward Software Engineering

1. INTRODUCTION
The problem and importance of developing secure code is
notorious in the high-tech sector. Mike Howard, Principal
Security Program Manager at Microsoft, notes that due to
ever evolving code and the constant vigilance of hackers,
“security is a never ending battle” and stresses the
importance of providing ongoing training in secure
programming1. For high-tech companies like Microsoft that
employ large populations of developers, testers, engineers,
and program managers, the costs of ongoing security training
are high, but the cost of not implementing such training is
always higher.

At the University of Washington’s Center for Information
Assurance and Cybersecurity (CIAC), an NSA/DHS Center
of Academic Excellence in Information Assurance Education

1 Howard, Michael. “Lessons Learned from Five Years of Building More

Secure Software”. MSDN Magazine. November 2007.
http://msdn.microsoft.com/en-us/magazine/cc163310.aspx

and Research, the authors believe that the absence of college
level secure coding curriculum, along with instructor
unfamiliarity with security, are the major obstacles
preventing more schools from teaching this important set of
skills to their students.

Consequently, the CIAC is proposing an approach to
educating and training faculty members who are not familiar
with security concepts and who must teach many non-
traditional students who were not exposed to security
concepts from the beginning of their CS/IS education and
across the curriculum. A pilot program is proposed that will
train seven faculty members per year for two years who will
reach over 1200 computer science students in the Puget
Sound area. Success of this program, as determined by
internal and external evaluation, will allow broadening this
reach, making this work available to more faculty in-, and
outside, the Pacific Northwest.

2. PREVIOUS WORKS
It is estimated that 90 percent of reported security incidents
result from exploits against defects in the design or code of
commonly used software [7]. Furthermore, the threats from
exploited software vulnerabilities are growing, along with
the number of known vulnerabilities. Carnegie Mellon
University's Computer Emergency Response Team (CMU-
CERT) provides a yearly report on the number of software
vulnerabilities which has grown steadily over the past
decade and hit an all-time high of 8,064 in 2006 dropping
slightly in 2007 to 7,236 [3], a 42-fold increase from 1995
when they began keeping these statistics. By improving the
education of computer scientists, there should be a
significant reduction in the number of software
vulnerabilities produced in their code.

There have been three approaches to instruction in secure
coding [13, 20]: the single-course approach, the track

approach, and the thread approach. Table 1 shows
comparisons of the three approaches.

Table 1: Comparisons of the three approaches to
undergraduate instruction in secure coding

Criteria Single-Course Track Thread

The depth of
learning Low High Medium

The breadth
of learning Low High Medium

The demand
of resources

Medium, a
security
faculty

member is
demanded.

High, multiple
faculty

members are
demanded.

Low, current
faculty

members are
retrained.

The change of
CS curriculum

Medium, only
one elective
course needs
to be added.

Yes, multiple
new courses
need to be

added.

Low, the
security

concepts are
integrated

into current
courses.

Across the CS
core

curriculum
Very Low Medium High

Across the CS
elective

curriculum
Low Medium High

Transferring
across

institutions
Medium Low High

Recently, the thread approach, which integrates security
concepts into existing Computer Science (CS) and
Information Systems (IS) curriculum, has been recognized
as effective, without causing severe expense of depth and
breadth of a complete curriculum change for resource-
limited institutions. This approach has a strong advantage in
that a complete thread can be transferred more easily across
both core and elective curricula, as well as different kinds of
institutions. There is no need for introduction of complete
new courses and the internal curriculum review process that
may slow implementation. Several successful attempts at
the thread approach have been reported [16, 2, 17, 18].

3. PROPOSED SOLUTIONS

In this project, the authors propose to develop/implement a
secure software reengineering-based thread approach. By
this is meant the development of software engineering case
studies that produce code the traditional way, without regard
to security measures, then demonstrating how these same
case studies can be transformed to include security across
the life cycle, resulting in secure code. Going through
several cases in this manner will give instructors taking the

authors’ workshops, not only specific labs they can
implement in their own courses, but also an understanding
of how they can transform their own existing assignments to
incorporate secure coding practices. While some instructors
may wish to adopt the cases introduced in the workshop for
their own courses, it is recognized that many are committed
to exercises they have developed in years past. Therefore
efforts will be directed toward assisting them in converting
their existing lab assignments to ones that reflect secure
coding practices.

The development of the project’s teaching modules takes
into consideration life cycle concepts from the approach to
software assurance proposed by the Department of
Homeland Security (DHS) National Cyber Security
Division [6]. DHS stresses a multi-faceted approach, which
includes the following components:

• People - Education and training for developers and

users.
• Processes - Practical guidelines and best practices for

the development of secure software.
• Technology - Tools for evaluating software

vulnerabilities and quality.

People –Non-Traditional Students and Instructors
Unfamiliar with Security
The approach reflects the unique student bodies the authors
are choosing to address. The University of Washington at
Tacoma Computer Science department caters to transfer
students from two-year programs and returning adults
interested in software engineering as a career change. The
University of Washington Seattle campus Information
School caters to a similar student body. Faculty on both
campuses who are teaching these students will be engaged
in this project, as well as faculty from two-year institutions
that produce the students who transfer to both schools, in an
effort to build a common understanding of secure coding
practices across a four-year program, regardless from where
students come.

Schools that offer computer security subjects may offer a
course or two in secure coding principles [7, 16], typically
targeted toward upper division students after they have
completed a number of programming courses and have
developed insecure programming habits. The justification
for teaching secure programming to more seasoned students
is that novice programmers couldn’t understand the
concepts underlying defensive coding practices. Yet these
same students may be more difficult to penetrate, having
ingrained bad programming habits already.
An alternative is to present secure coding principles in the
beginning courses, before student form habits, and continue
reinforcing these concepts in more advanced courses. The
advantage of this approach is that introducing secure
programming concepts to new programmers from the

beginning of their programming careers avoids the problem
of having to retrain them later after having developed bad
programming habits. Secure coding can be introduced to
beginning students if coding examples stress the
consequences of insecure input and explain the dangers of
using insecure function calls [18]. The introductory
concepts don’t have to be sophisticated to be effective.

Between the two approaches–teaching secure programming
later versus earlier in a student’s education–the authors
believe that security should be taught from the beginning.
While there is not a substantial amount of data to support
this belief [16, 2], the literature on performance and human
errors reinforces this view. While ideal, this approach
cannot be applied to 4-year universities who accept many
transfer students from local community colleges and/or
master-level students who already have earned CS degrees
without learning security and information assurance through
their degree programs. The approach presented in this paper
addresses these kinds of students.

A survey of the security education literature and a review of
the current courses in the authors’ respective schools and in
the region reveal that there is no standard or consistent
approach described for teaching non-traditional students
who transfer from local community colleges to a four-year
college or who apply for a professional masters program
accepting students who are non-CS majors. These are the
students the respective schools in the pilot study propose to
reach. The University of Washington (UW) Seattle and
Tacoma campuses accept many transfer students from 35
Community and Technical Colleges (CTC)2. In particular,
UW Tacoma was founded as an urban university that
supports the 2+2 model for transfer students (two years of
community college and two years of a four-year college
program) and also offers a professional MS degree program
for non-CS majors, most of whom have not been exposed to
computer security or information assurance in their
programs. The authors believe this unique body of students,
as yet undescribed in the literature, can be reached and that
there is a great need for education in secure coding proposed
to be provided.

Process – Transforming Insecure Lab Assignments to
Secure Ones
Without inventing new secure coding electives, secure
coding concepts and practicum can be injected into existing
core or elective courses through programming assignments.
In order to minimize the changes to existing computer
science curriculum, injection of secure coding concepts into
existing lab assignment as a means of
modernizing/transforming requirements is recommended.
Many references to secure coding projects are currently

2 Washington State Board for Community and Technical Colleges

(SBCTC), http://www.sbctc.ctc.edu/ (Accessed on 2/14/08)

available [1, 5, 9, 10, 11, 12, 14, 19]; however, all of them
focus on either specific secure coding techniques or forward
software development from given security requirements to
secure applications. To be effective at convincing faculty to
adopt secure coding practices, the authors wish to
demonstrate how simple it is to transform existing
assignments into secure coding assignments, thus
minimizing the changes needed for their teaching materials.
The methodology proposed will be the subject of
publications discussing the need to effectively deal with
natural instructor resistance to change that adopting secure
coding practices creates.

The approach to transforming existing curriculum is similar
to software reengineering which is “the examination and
alteration of a subject system to reconstitute it in a new form
and the subsequent implementation of the new form [4].”
Software reengineering consists of two processes: reverse
software engineering and forward software engineering.
Through reverse engineering, students gain a sufficiently
high-level of understanding of how to discover the
weaknesses of an application’s code through security attack
testing procedures such as white/black hat testing,
penetration testing, etc. The insecure legacy application is
then “modernized” to become a secure target application by
answering the discovered security weaknesses and
implementing new security requirements.

In the forward software engineering process, secure coding
topics are covered, regardless of the programming language:
validation of all inputs, insuring files are handled correctly,
insuring variables are well defined with the proper types and
that memory is allocated and collected depending on the
language used, cross-site script vulnerabilities, SQL
injection which affects most modern databases, script
vulnerabilities in multiple common scripting languages are
all introduced. Figure 1 (following the reference section)
shows the conceptual description of software reengineering
for lab assignments.

By stressing the security implications of incorrect
programming techniques as these subjects are introduced,
students can be exposed to secure programming at the same
time they are first learning the material. It is not more
difficult to design programs, exercises and labs that stress
security as opposed to using other types of examples. In
fact, one can argue that the security purpose behind correct
handling of inputs, memory and files adds an extra element
of motivation since the consequences of incorrect
programming can be dire. Examples from real programs
will be used to illustrate both the correct and incorrect ways
to write programs. Since students taking these courses are
assumed to already have a programming basis, more
advanced concepts can be addressed dealing with
dependable distributed system design issues, among others.

Technology – Visualizing, Specifying, Constructing, and
Documenting Lab Assignments
Teaching modules developed through this grant will not
only benefit the institutions directly involved in creating
these teaching materials, but will be disseminated to faculty
in other institutions. Activities fall under the Institutional
Faculty Development component of the Capacity Building
portion of the Scholarship for Services (SFS) Program
announcement which requires dissemination to outside
faculty. One of the main motivations for developing these
secure code modules is to assist as many faculty members as
possible with teaching secure coding to their students.

In order to address a larger potential population of students
and CS educators, in alignment with different institutional
interests, the workshop curriculum will focus on effective
understanding of the software reengineering process and lab
assignments by using visual diagrams in Unified Modeling
Language (UML) [8] during the software reengineering
process. UML is a general-purpose modeling language for
visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system. In addition to the
handouts of lab assignments with source code, UML
diagrams are employed to enhance clear understanding on
the legacy and the target systems.

Since UML has been widely adopted in CS courses to help
students to understand object-oriented concepts, it can be
used without having serious difficulties in order to discuss
the visualization, specification, construction, and
documentation of how a legacy system has been made more
secured in the target system. For example, a class diagram
of a target system shows how design of the target system
has been improved to handle files correctly. A use case
diagram of the target system shows how security
requirements are described and managed. A state chart
diagram for a form in the target system shows how all
inputs are validated by events.

4. CASE STUDY
The Information Technology and Systems (ITS) program at
the University of Washington (UW) Tacoma offers a
programming course for junior students called TINFO 300.
Most of the students in TINFO 300 have transferred from
local community colleges. Since the students already have
studied an introductory level programming course before
taking TINFO 300, they study object-oriented analysis and
design in this course. One of the homework assignments is
to develop a Windows GUI (Graphical User Interface)
application in the C# .NET object-oriented programming
language. In Figure 2, a user invests $100 every month for
1 year earning a 1% yearly interest rate. The future value of
the investment is calculated when the ‘Calculate’ button is

pressed. The source code of this example comes from Joel
Murach’s C# 20083.

Figure 2: A desktop application to calculate a monthly
investment (an insecure legacy system)

Figure 3: A desktop application is executed without any
input data (an insecure legacy system).

The homework consists of 4 problems: The first problem is
to implement the desktop application without input
validation. Although input data validation is one of the most
important and simple countermeasures against external
threats, this technique has not been emphasized in
traditional programming courses. And then, test cases using
invalid data are tested. For example, Figure 3 shows that the
implemented future value calculation system is vulnerable
to an invalid input data threat. Without entering any data,
an attacker can crash the system.

3 Joel Murach. Murach’s C# 2008. Mike Murach & Associates, Inc. (978-1-

890774-46-2)

The second problem is to analyze the insecure legacy
system by using both class and sequence diagrams. The
class of ‘Form’ in Figure 4 shows that the class does not
have any input data validation methods at all. Also, the
sequence diagram in Figure 5 (after the reference section)
describes that the ‘CalculateFutureValue()’ method is
invoked without having any filtering for invalid input data.

Figure 4: A class invoking the ‘CalculateFutureValue()’
without input data validation (an insecure legacy system)

The third problem is to design a secure target system in
which the invalid input data vulnerability is counter-
measured by data validation methods. Figure 6 shows that
there are input validation methods such as ‘IsValidData()’,
‘IsPresent()’, etc. These methods are invoked before the
user presses the ‘Calculate’ button, which will call the
‘CalculateFutureValue()’ method. This sequence diagram
in Figure 7 (after the reference section) describes that the
‘CalculateFutureValue()’ method is invoked after input
data validation.

Figure 6: A class invoking the ‘CalculateFutureValue()’
with input data validation (a secure target system)

The last problem is to demonstrate that the target system is
secure. Students in TINFO 300 implement the input data
validation methods and test the newly implemented secure
target system against the invalid input data threats. Figure 8

shows that the null input data threat is detected and a
warning message is displayed.

Figure 8: A desktop application is executed with input data

(a secure target system).

5. DISCUSSIONS

The software re-engineering approach described above is
unique to this secure coding research and designed to
empower faculty taking workshops to transform their own
curriculum, In addition, it is the intention of this research to
provide curriculum threads that bridge community colleges
and traditional four-year schools. While much attention has
been given to the value of teaching secure coding principles
from the beginning of a CS curriculum, little has been
described about how this might occur in the case of transfer
students coming from community colleges and returning
adults who have already formed habits to develop insecure
code.

It is the purpose of this research to optimize the approach
described in this paper through a series of faculty workshops
for which robust evaluation will be performed. Future work
will involve describing these results to a broader academic
community to encourage adoption of practices that will
make it relatively easy to convert existing programming
curriculum to reflect secure coding practices.

ACKNOWLEDGMENT
This research has been supported by the NSF (National
Science Foundation) DUE (Division of Undergraduate

class FutureValue

Form
Form1

+ Form1()
- btnCalculate_Click(object, EventArgs) : void
- CalculateFutureValue(decimal, int, decimal) : decimal
- btnExit_Click(object, EventArgs) : void
- ClearFutureValue(object, EventArgs) : void

class FutureValue

Form
Form1

+ Form1()
- btnCalculate_Click(object, EventArgs) : void
+ IsValidData() : bool
+ IsPresent(TextBox, string) : bool
+ IsDecimal(TextBox, string) : bool
+ IsInt32(TextBox, string) : bool
+ IsWithinRange(TextBox, string, decimal, decimal) : bool
- CalculateFutureValue(decimal, decimal, int) : decimal
- btnExit_Click(object, EventArgs) : void

Education) Federal Cyber Service: Scholarship for Service
(SFS) under Grant No. #0912109.

REFERENCES

[1] Anderson, R., (2008). Security Engineering: A Guide to
Building Dependable Distributed Systems, (2nd ed.). New
York: John Wiley & Sons.

[2] Bishop, M. and B. J. Orvis. (2006). A Clinic to Teach Good
Programming Practices. Proceedings of the 10th Colloquium
for Information Systems Security Education, University of
Maryland: Adelphi, MD, pp. 168-174.

[3] CERT Coordination Center (CERT/CC). (2008).
Vulnerability Remediation Statistics. Available at:
http://www.cert.org/stats/vulnerability_remediation.html,
(Access on 11/11/2008)

[4] Chikofsky, E. J. and H.J. Cross II. Reverse Engineering and
Design Recovery: A Taxonomy, IEEE Software, Vol. 7, No. 1,
January 1990, pp. 13-17.

[5] Chess, B., and J. West. (2007). Secure Programming with
Static Analysis. New York: Addison-Wesley Professional.

[6] DHS (Department of Homeland Security) National Cyber
Security Division. (2005). Build Security In: Setting a Higher
Standard for Software Assurance. Available at:
https://buildsecurityin.us-cert.gov/daisy/bsi/mission.html
(Accessed on 11/11/2008)

[7] Endicott-Popovsky, B.E., Frincke, D., V.M. Popovsky.
(2005). Secure Code: The Capstone Class in an IA Track.
Proceedings of the 9th Colloquium for Information Systems
Security Education, Georgia Institute of Technology: Atlanta,
GA, pp.100-108.

[8] Martin Fowler. (2004). UML Distilled: A Brief Guide to the
Standard Object Modeling Language, (3rd ed.). New York:
Addison-Wesley Object Technology Series.

[9] Graff, M. G., and K.R. van Wyk. (2003). Secure Coding
Principles and Practices. San Francisco: O'Reilly.

[10] Howard, M and D. LeBlanc. (2002). Writing Secure Code,
(2nd ed.). Seattle: Microsoft Press.

[11] Howard, M., LeBlanc, D., and J. Viega. (2005). 19 Deadly
Sins of Software Security. New York: McGraw-Hill/Osborne.

[12] Microsoft (2003). Improving Web Application Security:
Threats and Countermeasures. Microsoft.
Available at:
http://www.microsoft.com/downloads/details.aspx?FamilyID
=E9C4BFAA-AF88-4AA5-88D4-
ODEA898C31B9&displaylang=en

[13] Perrone, L. F., Aburdene, M., and X. Meng. (2005).
Approaches to Undergraduate Instruction in Computer
Security, Proceedings of the American Society for
Engineering Education Annual Conference & Exposition:
Portland, OR.

[14] Seacord, R. (2005). Secure Coding in C and C++. New York:
Addison-Wesley.

[15] Swiderski, F. and W. Snyder. (2004). Threat Modeling.
Seattle: Microsoft Press.

[16] Taylor, B. and S. Azadegan. (2006). Threading Secure
Coding Principles and Risk Analysis into the Undergraduate
Computer Science and Information Systems Curriculum.
Proceedings of the 3rd Annual Information Security
Curriculum Development, Kennesaw, GA.

[17] Taylor, B. and S. Azadegan. (2007). Using Security Checklist
and Scorecards in CS Curriculum. Proceedings of the 10th
Colloquium for Information Systems Security Education,
Boston University: Boston, MA.

[18] Taylor, B. and S. Azadegan. (2008). Moving Beyond Security
Tracks: Integrating Security in CS0 And CS1. Proceedings of
the 38th SIGCSE Technical Symposium on Computer
Science Education, Portland, OR, p. 320-324.

[19] Viega, H., and G. McGraw. (2002). Building Secure
Software: How to Avoid Security Problems the Right Way.
New York: Addison-Wesley.

[20] Whitman, M. E. and H.J. Mattord. (2004). Designing and
Teaching Information Security Curriculum. Proceedings of
the 1st Annual Information Security Curriculum
Development, Kennesaw, GA.

Figure 1: The conceptual description of software reengineering for lab assignments

Figure 5: A sequence diagram showing that the ‘CalculateFutureValue()’ method was invoked without having any input
data validation checking (an insecure legacy system).

Figure 7: A sequence diagram showing that the ‘CalculateFutureValue()’ method was invoked after having input data
validation checking (a secure target system).

sd Sequence Diagram

:Customer

:Program :Form1

run 'FutureValue.exe'()

Main()

btnCalculate_Click(object, EventArgs)

CalculateFutureValue(decimal, int, decimal) :decimal

btnExit_Click(object, EventArgs)

sd Sequence Diagram

:Customer

:Program :Form1

run 'FutureValue.exe'()

Main()

btnCalculate_Click(object, EventArgs)

IsValidData() :bool

IsPresent(TextBox, string) :bool

IsDecimal(TextBox, string) :bool

IsWithinRange(TextBox, string, decimal, decimal) :bool

IsInt32(TextBox, string) :bool

CalculateFutureValue(decimal, decimal, int) :decimal

btnExit_Click(object, EventArgs)

