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ABSTRACT 
 
This paper proposes a generally new type of macro and 
megaspace filling honeycombs having quasiregular pentahedral 
cells with skew hexagonal faces. An existence of spatial cells 
named pentahedra is demonstrated by topological 
transformations of hexagonal prismatic honeycomb and is based 
on a recently discovered Phi relationship within a regular 
hexagonal tessellation. A geometric symmetry of this 
honeycomb is studied, filling the space with no gaps or 
overlaps. Finally it is pointed out that abstract or skeletal 
analogues of pentahedral honeycomb have effective practical 
uses by synthesis of artificial man-made macromedium, 
especially the like of orbital large scale structural systems. 
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1.  INTRODUCTION 
 
Two earlier made discoveries lie in the ground of necessity to 
carry out these investigations within spatial macro structural 
geometry.  
 
The first lies within a structural mechanics. In 1993 it was 
demonstrated that stiffness components of the topological 
invariants of a spatial bar system are not identical by identically 
used volume of the material [2]. The numerical value of this 
characteristic is the most highest of cell like a lattice of 
diamond, exceeded for example 5.9 times a topological stiffness 
component of a traditionally used triangular lattice. 
  
It had been discovered in 2007 that vertices of regular 
hexagonal tessellation are Phi centres with very low variance 
that corresponds to the 11-th series of the Fibonacci 
convergence sequence on Phi [3, 4]. It means that an existence 
of such a rational geometric ratio could secure the highest 
specific mechanical stiffness exactly of the hexagonal structure. 
Thereby here is a geometrical problem to construct a 
honeycomb like a spatial analogue of planar regular hexagonal 
tiling. 
 
 

2.  TOPOLOGICAL TRANSFORMATIONS OF A 
HEXAGONAL PRISMATIC HONEYCOMB 

 
We start with building up an infinite horizontal layer of regular 
hexagonal prisms (Fig. 1). Let a be the length of edges of their 
base hexagons, and let y be the height of each prism, i.e., the 

distance between the horizontal base planes (it will be 
determined below). 
 

 
Figure 1: A layer of hexagonal prisms:  

(0) and (-1) – even and odd horizontal planes of vertices, 
respectively; a – length of edges of hexagons;  

y – thickness of a layer. 
 
We further make up a hexagonal prismatic honeycomb by 
arranging layers one above the other so that bases of prisms in 
neighbouring layers coincide. The horizontal planes between 
layers are labelled by consecutive integers: …, -4, -3, -2, -1, 0, 
1, 2, 3, 4… We also colour vertices of the grid in black and 
white so as ends of every horizontal edge are coloured 
differently, while ends of every vertical edge have the same 
colour. This colouring is used to describe a certain deformation 
within the layer: (a) we move all black points lying in the planes 
labelled by even integers (including 0) vertically up by an 
amount x, and all the white points down by the same amount x 
(x will be determined later on); (b) we act the other way (black 
vertices down, white ones up) in the odd planes (Fig. 2). 
 

 
Figure 2: Topologic transformations of hexagonal prism:  

x – amount of the vertical displacement of vertices.



During the topological transformation vertical edges of former 
hexagonal prismatic honeycomb are divided in two groups such 
that one group consists of those of increased length (y+2x) and 
the other group – of reduced length (y-2x). It means that instead 
of 6 vertical rectangles of each former hexagonal prism we have 
obtained 3 regular once convex hexagonal faces, but instead of 
2 horizontal hexagons, 2 regular twice convex faces. In this 
way, we obtain a peculiar polyhedron of new kind with five 
skew hexagonal faces which will be called pentahedron.  
 
We are now going to determine the corresponding values of the 
parameters x and y. Let us observe one vertex O within obtained 
pentahedral honeycomb (Fig. 3) connected with vertices J, N, C 
and H. In this figure, the point I was moved up, and the points J, 
N, and H were moved down from their common plane, while 
the point C was moved down from the nearest upper plane. The 
point I has now only four adjacent vertices (in contrast to five in 
the former hexagonal prismatic honeycomb). As we want the 
four edges incident to I to be of equal length, and the six angles 
between those edges of the same size, the pyramid JNHC has to 
be regular and the point I has to be its focus. 

 
Figure 3: The pentahedral honeycomb:  

 regular tetrapod circumscribed by  
 triangular pyramid. 

 
Let us draw a regular triangular pyramid JNHC with focus I, 
denote the centre of its base triangle by M, and the midpoint of 
the edge JN by R (Fig. 3). Recall that a was the initial length of 
edges of hexagons, x was the amount of the vertical shift of 
vertices, and y was the thickness of a layer (i.e., the length of 
vertical edges). Therefore aHMNMIM === , xIM 2= , and 

yMC = . 
 

Since the pyramid is regular, the edges of pentahedron incident 
to I are of equal length, which we denote by z:  

zCIHINIJI ==== . 
 
The angles between these lines also are equal; let α stand for 
their size. Then 

α=∠=∠=∠=∠=∠=∠ HICNICJICHIJNIHJIN . 
 
Next we will determine the values of the above-defined 
parameters x and y so that the pyramid JNHC could be regular, 
indeed. Using Eg. (1) - (8) and performing the calculations, we 
finally will also obtain the value of z with respect to y and x as 
well as the size of the angle α: 
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The focus of a regular pyramid divides its height in the ratio 
1:3. Then 
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Summing up: pentahedral honeycomb is a structure determined 
by a single parameter z. In order to construct this structure, a 
hexagonal prismatic honeycomb has to be constructed first. In 
this latter one the length of an edge of each hexagon 

is zza 2
3
2

23
4

== , the height of each prism (i.e., the length 

of its lateral edges) is zay 2
3
222 == . 

 
Then vertices of the prisms have to be shifted 

by zzax
6
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8
2

8
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=⋅== . In this way, the faces of 

prismatic hexagonal honeycomb are transformed into skew 
hexagonal faces of the pentahedral honeycomb. All the angles 
between the adjacent edges in the pentahedral honeycomb will 
be °≈= 47.1092arctan2α . 
 
Let us check one more geometrical relation within a pentahedral 
cell having skew hexagonal faces. In Fig. 2 depicted is one 
deformed lateral face ABHG of an initial hexagonal prism. It is 
an equilateral trapezoid; the sides AG, GH, and AB are edges of 
a cell in the newly constructed pentahedral honeycomb, 

°≈==∠=∠ 47.1092arctan2αGABAGH and AP is the 

height of the trapezoid. We should to check that zxBP
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3.  SYMMETRY OF THE  

PENTAHEDRAL HONEYCOMB 
 
Symmetry, being the most inherent property of pentahedrons 
and spatial pentahedral tessellations, has been studied both on 
the level of a separate cell and of a honeycomb as a whole by 
means of symmetry groups (Fig. 4). 
 
The pentahedron has 12 vertices, 15 edges, and 5 faces – the 
skew hexagons ABCDEF , GHIJKL, ABCIHG, EDCIJK, and 
AFEKLG. In a pentahedral honeycomb, every vertex is incident 



to 4 equal edges, and the angle between any two of them is 
( ) .47,1092arctan2 °≈⋅=α  

 

 
Figure 4: On a symmetry of pentahedral cell:  

 bend lines of skew hexagonal faces 
with midpoints X and Y;  triangular prism,  

 vectors of the symmetry. 
 
3.1 Polyhedral Symmetry Group 
The symmetry group of a pentahedron, i.e. the group of 
orthogonal transformations of a space, that map the figure onto 
itself, is isomorphic to the symmetry group D3 of a regular 
triangular prism. This follows from the fact that every 
orthogonal transformation which maps a pentahedron onto itself 
is completely determined by an orthogonal transformation 
which maps onto itself the regular prism ACEGIK. The 
following transformations are the generators of the symmetry 
group of a pentahedron:  

a) Rotation through 120° on the central vertical axis of 
the pentahedron, 

b) Symmetry about the central horizontal plane, 
c) Symmetry about the line XY. 

 
3.2 Symmetry of the Honeycomb 
There are three independent vectors the translation along which 
maps a honeycomb onto itself. These translations are the base 
elements of the translation group of the honeycomb which is 
isomorphic to the free Abelian group .3 ZZZZ ⊕⊕= More 
specifically, the base consists of 

a) The vertical translation along the 

vector AGAGAGFLAG
3
8

3
5

=+=+ , 

b) The translation in the horizontal plane along the 

vector AC , 
c) The translation in the horizontal plane along the 

vector AE . 
 
The (full) symmetry group of the honeycomb is generated by  

a) Generators of 3D , 
b) Generators of Z 3, and 
c) The rotation of the honeycomb through 60° on the 

vertical axis of a pentahedral cell. 
 
An infinite pentahedral tessellation includes space tunnels 
structures with skew hexagonal faces. They have six-fold spiral 
symmetry, for polyhedrons packed along vertical axis repeat 
both after a rotation through 60° and a translation by a distance 
equal to the length of each edge. The main characteristics of 
symmetry properties of a pentahedral honeycomb are given in 
Table 1. 

Table 1. The main characteristics of symmetry properties  
of a pentahedral honeycomb. 

 
No Characterization Explanation 
1. Type Convex uniform honeycomb 
2. Family skew hexagon faces polyhedra 
3. Cell type {6.4} 
4. Face type {6} 
5. Schläfly symbol {6.6} 
6. Coxeter group 

(D 3 , Z 3 , Z) 
7. Coxeter – Dunkin 

diagram 

 
8. Cells / edge {4.3}4 
9. Faces / edge 63 
10. Cells / vertex {4.3} 
11. Faces / vertex 66 
12. Edges vertex 6 
13. Dual triangular bi-pyramid 

 
14. Vertex figure tetrahedron 

 
15. Internal angle 109.47° 
16. Symmetry group D3 
17. Other properties isogonal and isotoxal polyhedra,  

n=6 fold helical symmetry of Z 
tunnel  

 
 

4.  ON A SKELETAL APPROACH  
TO THE PENTAHEDRAL HONEYCOMB 

 
The long standing challenge of designing and constructing new 
crystalline solid state materials from molecular building blocks 
had been successfully started [6]. This success concerning a 
reticular synthesis (or chemistry) of robust materials with highly 
porous frameworks and with predetermined chemical properties 
had been achieved by investigation of abstract (skeletal) micro 
and nanostructural polyhedra. 
 
This same conceptual approach could be employed for the 
creation of non-default macro and megastructural skeletal 
systems by predetermining such mechanical properties like 
minimum mass or maximum stiffness. Branko Grünbaum made 
a special study of abstract polyhedra, in which he developed an 
early idea. He defined a face as a cyclically ordered set of 
vertices, and allowed faces to be skew as well as planar [5]. 
Moreover in modern computer graphics any polyhedron gives 
rise to a graph or skeleton with corresponding vertices and 
edges. 



It has been proved in a Chapter 2 that macrospatial pentahedral 
honeycomb has the same skeletal graph or skeleton as a 
nanospatial lonsdaleite or hexagonal diamond, which vertices 
are like junctions of tetrapod shape. It allows creating structural 
building constructions like hybrid bar systems. Thereby 
tetrapod shape junctions of bars or finite superelements of this 
system must be shells without moments of deflection like the 
most effective macro and megaconstruction from the point of 
view of used volume of material [1]. 

 
 

5.  CONCLUSIONS 
 
1. The pentahedral honeycomb has been obtained by 

topological transformations (stretching) of a regular 
prismatic hexagonal tessellation and is quasi-regular (vertex 
and edge transitive) with cells having three regular once 
convex and two regular twice convex faces. 

2. Pentahedral honeycomb is a third type of discrete symmetry 
groups equipped with a topology or an infinite space group 
which combines elements of both point groups and lattice 
groups and also include such an extra transformation like 
screw axis. 

3. Pentahedra are homeomorphic to hexagonal prisms uniform 
polyhedra consisting of regular skew hexagonal faces and 
congruent vertices. So they have exactly the same size and 
shape and are second space tiling polyhedra after cubic one, 
tilling space without holes and overlaps. 

4. It could foresee a widely use of pentahedral lattices for a 
synthesis of minimum mass and maximum stiffest large 
scale structural especially orbital systems or builds on Earth 
natural satellites. 
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