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ABSTRACT

Duffing Oscillator is well known for its chaotic behaviour. 

This paper aims at clustering of emotions from the EEG 

response to external audio-visual stimulus used for excitation 

of a subject. The EEG signal corresponding to a specific 

emotive stimulus is used as an excitation input to a non-linear 

Duffing Oscillator dynamics, and the phase trajectory plots of 

the two state variables of the oscillator dynamics exhibits 

significant differences for various emotion-excitatory stimuli. 

Experimental investigations reveal that injection of Gaussian 

noise with a Signal-to-Noise Ratio as low as 25 dB retains the 

results of emotion clustering, indicating robustness of 

clustering. Further, with different pre-classified audio-visual 

stimulus responsible for excitation of a specific emotion, the 

phase-portraits obtained from EEG data of the subject have 

substantial similarity, indicating accuracy in clustering. 

Keywords: Duffing oscillator, EEG, Emotion clustering and 

Gaussian Noise. 

1. INTRODUCTION 

Perception involves interpreting sights, sounds, smells and 

touch. Perception is relatively younger discipline in Artificial 

Intelligence, and we are afraid that there are fewer works on 

perception about emotions. Researchers, however, are keen to 

develop new models and techniques to understand and 

recognize emotions from external manifestations, such as 

crying, laughing etc. this paper deals with classification of 

emotion aroused with audio-visual stimulus from 

electroencephalographic (EEGs) signals. Biologists believe 

that most of our high level understanding process involving 

emotions is due to the interaction of neural and hormonal 

activities. EEGs that represent neural activities of the brain 

might help us in better understanding human emotions than 

other widely used modes including facial expression [1], [8], 

[17] and voice [2], [6], [17]. 

In recent times, researchers have started paying attention to 

Electroencephalography (EEG) [19], functional Magnetic 

Resonance Imaging (fMRI) [11], [18], Positron Emission 

Tomography (PET) [18], and Magnetoencephalography 

(MEG) [7] –based information to correctly determine the 

emotional response to external stimulus. However, 

unfortunately, very little of brain functioning could be 

identified until this time, and consequently, almost no 

interesting results have been reported so far on emotion 

clustering from the above modes of information extraction. 

The primary objective of this paper is to classify emotion of a 

subject from his/her EEG signal, obtained through audio-

visual excitation of the subject. In our early research [4], [5], 

we classified the input stimulus based on their power of 

excitation on a specific emotion. We used these stimuli in the 

present experiment, and would like to examine whether 

stimulus used for excitation of same emotion would 

ultimately map EEG’s to a unique pattern. 

In order to examine similarity among EEG patterns 

corresponding to a specific emotion excitatory stimulus, we 

employ a Duffing Oscillator and the response of the oscillator 

to the EEG signal as excitation input is recorded. Phase 

trajectories are built up with two state variables of the 

oscillator dynamics, and similarity in the chaotic behavior in 

the phase trajectory is noted for similar stimulus. This 

fundamental observation reveals that EEG obtained for 

arousal of a specific emotion has a unique characteristic. Thus 

emotion classification by EEG signal should result in good 

accuracy in comparison to other traditional means of emotion 

clustering from voice and facial expressions. 

The paper is classified into 5 sections. In section 2, we briefly 

outline the state space representation of a Duffing Oscillator 

dynamics and how phase trajectories were obtained from the 

time-response of the oscillator dynamics. In section 3, we 

represent the experimental results for emotion clustering by 



noting similarity in phase trajectory. The effect of noise on 

the EEG signal is studied in section 4. Conclusions are listed 

in section 5. 

2. THE DUFFING OSCILLATOR DYNAMICS 

AND PHASE RESPONSE 

In this section, we propose a specialized non-linear oscillator 

dynamics, which has a proven chaotic behavior [3], [13], [14], 

[16] in its temporal response. The dynamics of Duffing 

Oscillator has a similarity with typical spring-mass load 

system of a conventional mechanical process [12], [15]. 

However, the spring in the present context, being a non-linear 

device, has a restoration force proportional to its cubic linear 

displacement. Naturally, the restoration force of ideal spring 

that obeys Hooke’s Law is also maintained in the Duffing 

Oscillator dynamics. Consequently, the restoration force has 

two components, one following Hooke’s Law, while the other 

is due to a high stiffness condition of the spring, represented 

by a cubic displacement term. The dynamics of Duffing 

Oscillator is given in equation (1).   
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where, 

x represents the linear displacement, 
��
��  represents the velocity of a unit mass connected 

in spring-mass load system, 

βx and αx
3
 are due to spring restoration force, 

�cos ���� is a fixed excitation input to maintain 

certain level of oscillation in the response of the 

dynamics, and 

e(t) is the disturbance input to the oscillator. 

In this present context, we use the EEG signal as the 

disturbance input e(t). We took α=1, β=-1, γ=0.826, δ=0.5 and 

the gain of the EEG signal to be 5. The basic Duffing 

Oscillator dynamics (1) can equivalently be represented by (2) 

and (3). 
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  (3)  

  At first, the EEG signal, which was obtained in sampled 

version, was passed through a First-Order-Hold circuit, whose 

transfer function is given by: 
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where 

T= sampling time, 

s= Laplace-domain operator. 

The hold-circuit is used to get a continuous version of 

discrete EEG signal. Then, a Runge-Kutta algorithm was used 

to solve the coupled-differential equations (2) and (3), and 

phase portraits for x against y at different time slots are 

plotted. One typical phase portrait for an initial value of x(0)= 

2 and y(0)= 20 is given in Fig. 2.a for convenience. Since 

Duffing Oscillator has a non-linear dynamics, as shown in the 

block diagram in Fig. 1, it is apparent that for varying initial 

conditions, the phase portraits could have been different 

shapes. However, experimental instances reveal that a chaotic 

response of the dynamics prevails even for redefining new 

initial conditions. Fig. 2.b and 2.c illustrate this behavior with 

different initial conditions. 

 
Fig 1: Block diagram of a Duffing Oscillator 

 
Fig. 2.a: Phase trajectory of anger with initial condition at x(0)= 2, y(0)= 20. 

 
Fig. 2.b: Phase trajectory of anger with initial condition at x(0)= -2, y(0)= 20. 

 
Fig. 2.c: Phase trajectory of anger with initial condition at x(0)= -2, y(0)= -20. 

3. EMOTION CLUSTERING FROM EEG 

SIGNALS USING DUFFING OSCILLATOR 

The time-continuous EEG signal obtained through first 

order hold circuit is used to excite the Duffing Oscillator, [9], 



[10], [14], [19] and the response of the oscillator is obtained 

by solving the differential equation using Runge-Kutta 

method. The experiment was conducted with 15 audio-visual 

stimuli, each 3 of which correspond to exciting a specific 

emotion. The principles of automatically identifying the best 

audio-visual stimulus, appropriate for excitation of a given 

emotion is briefly outlined below. 

To identify the right audio-visual stimulus responsible for 

arousal of a given emotion, we classified the stimulus 

manually with the help of 50 observers, most of whom are 

University students and faculties. Each observer was asked to 

classify a given audio-visual stimulus into 5 emotion-arousing 

classes - anger, fear, joy, relaxation and sadness. He/she used 

a 100-point scale, and assigned individual score to the entire 

possibility space of 5 emotions, such that sum of the scores 

assigned to a given audio-visual stimulus is equal to 100. For 

50 observers, we determine the mean and variance of their 

assignments to a particular emotion-prone category, and 

evaluate the ratio of mean/variance for each of the 5 emotions. 

The emotion having the largest mean/variance ratio is 

considered the best category for a given stimulus. The 

experiment was repeated for 50 such stimuli, and the 

mean/variance ratio of the winning emotion for each stimulus 

is identified. A sorting algorithm is then applied to rank them 

in descending order of their mean/variance measure in the 

specific emotion category. The first 3 stimuli for each 

category of emotion are then identified from the list. The 

entire experiment was performed with these 3 stimuli 

responsible for excitation of a specific emotion. 

Consequently, for 5 emotions, we have 5×3=15 best-selected 

audio-visual samples. Table I gives the tabular representation 

of the results obtained by responses of 50 subjects, each of 

whom was shown 60 audio-visual stimuli. It is apparent from 

the Table that the row-sum in Table I is always 100. 

TABLE I: ASSESSMENT OF THE AROUSAL POTENTIAL OF SELECTED AUDIO-

VISUAL MOVIE CLIPS IN EXCITING DIFFERENT EMOTIONS 

Subjects 

used  to 

access the 

emotion 

aroused by 

the audio-

visual clips 

Title of 

audio- 

visual 

clips 

Percentage arousals of different 

emotions by a clip 

 

Anger 

 

Relax 

 

Joy 

 

Sad 

 

Fear 

Subject 1 Clip 1 0 20 80 0 0 

Subject 2 Clip 1 0 25 75 0 0 

…       

Subject 50 Clip 1 0 12 88 0 0 

Subject 1 Clip 2 0 82 0 9 9 

Subject 2 Clip 2 0 80 0 12 8 

…       

Subject 50 Clip 2 0 84 0 10 6 

…       

Subject 1 Clip 60 78 10 0 0 12 

Subject 2 Clip 60 80 16 0 0 4 

Subject 50 Clip 60 84 8 0 0 8 

TABLE II: EXPERIMENTAL RESULTS ON THE CLUSTER-SHAPES 

Emotions and 

remarks on 

related phase 

plots 

Experimentally obtained cluster shapes 

(without noise) 

Anger 

 

The phase 

trajectory 

covers the 

least area and 

width, 

confined 

within 

��  = -8 to 

��  = 8. 

Fear 

 

An 

extension is 

visible to 

the right 

side of the 

main phase 

trajectory. 

Happiness 

 

The upper 

lobe is highly 

dispersed, 

less dense, 

thus covering 

the maximum 

area. 

Relaxation 

 

Above the 

upper lobe, a 

thick lobe is 

formed. An 

extension is 

formed nearer 

to the left side 

of the original 

upper lobe. 

Sadness 

 

Below the 

lower lobe, 

another 

lobe is 

formed, 

which is 

sparse in 

nature. 

 



Clustering from phase trajectory 

We performed two different experiments for clustering of 

emotions in the EEG space. First, different audio-visual 

stimuli were used to excite a specific emotion of a subject, 

and response of the Duffing Oscillator having initial condition 

x= 0 and y=0 from his/her EEG signal was obtained. Table II 

above gives a comparative study of the phase portraits of x 

against y, formed due to one of the selected audio-visual 

stimuli for each of the emotions. We noted that for three 

stimuli responsible for exciting the same emotion, the phase 

trajectories looked almost similar, indicating the fundamental 

truth that similar excitations for arousal of a given emotion is 

responsible for excitation of similar brain-activities, 

pertaining to similar EEG response. These EEG, when fed to 

a Duffing Oscillator, thus maintains similarity in these 

portraits of the oscillator state variables.  

Figures 3.a, 3.b, 3.c, 4.a, 4.b, 4.c, for example, demonstrate 

similarity in the phase portrait for excitation of emotions fear 

and relaxation from its stipulated stimulus list. 

 
Fig. 3.a: Phase trajectory for Fear due to 1st stimulus of Fear 

 
Fig. 3.b: Phase trajectory for Fear due to 2nd stimulus of Fear 

 
Fig. 3.c: Phase trajectory for Fear due to 3rd stimulus of Fear 

 
Fig. 4.a: Phase trajectory for Relaxation due to 1st stimulus of Relaxation 

 
Fig. 4.b: Phase trajectory for Relaxation due to 2nd stimulus of Relaxation 

 



 
Fig. 4.c: Phase trajectory for Relaxation due to 3rd stimulus of Relaxation 

4. EFFECT OF NOISE ON EMOTION 

CLUSTERING FROM DUFFING 

OSCILLATOR RESPONSE 

In this section, we experiment by adding noise to the 

original signal corresponding to a specific emotion, and note 

the changes in the phase portrait obtained from the Duffing 

Oscillator response. It is interesting to note that when Signal-

to-Noise Ratio of the EEG signal is maintained to a level of 

25 dB, the phase portraits maintains similarity, indicating 

robustness in emotion clustering. 

Figures 5.a, 5.b, 5.c, 6.a, 6.b, 6.c demonstrate the 

behavior in the phase portrait for different level of Signal-to-

Noise Ratio as indicated in the figure caption. It is also 

noteworthy that when the Signal-to-Noise Ratio goes below a 

threshold, misclassification starts, by noting differences in the 

phase portraits for a given emotion. 

 

Fig.5.a: Phase trajectory for Anger when the EEG signal is corrupted by a 

noise of SNR 30dB 

 
 Fig. 5.b: Phase trajectory for Anger when the EEG signal is corrupted by a 

noise of SNR 25dB 

 
Fig. 5.c: Phase trajectory for Anger when the EEG signal is corrupted by a 

noise of SNR 20dB 

 
Fig. 6.a: Phase trajectory for Joy when the EEG signal is corrupted by a 

noise of SNR 30dB 



 
Fig. 6.b: Phase trajectory for Joy when the EEG signal is corrupted by a 

noise of SNR 25dB 

 
Fig. 6.c: Phase trajectory for Joy when the EEG signal is corrupted by a 

noise of SNR 20dB 

5. CONCLUSIONS 

The paper attempted to cluster emotions from the 

stimulated EEG signals using Duffing Oscillator as a 

medium. EEG signals aroused with specific emotion 

excitatory stimulus were supplied as an input to the Duffing 

Oscillator, the phase portrait corresponding to the response 

of which is plotted. Similarity in phase portraits is 

considered clustering of EEG in the phase-space. 

Consequently, clustering of emotions can be undertaken by 

determining similarity of the EEG signals. A noise analysis 

undertaken reveals that the clustering of emotions can be 

clearly visualized in the phase portrait, as long as the Signal-

to-Noise Ratio is maintained above a prescribed threshold 

(25 dB). It is also obtained from the experiments that 

excitations responsible for arousing specific emotion have 

similar EEG signals, which can be clustered easily in the 

phase space from the response of the Duffing Oscillator. In 

brief, the similarity in chaotic behavior of the phase portraits 

resembles the similarity in EEG and consequently, similarity 

in emotions. The paper thus opens up a new methodology of 

emotion clustering from the EEG signals in the phase-space. 
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