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ABSTRACT 
 

For the quantization of two player, two strategy 

games by Eisert, Wilkens, and Lewestein, S. 

Landsburg has constructed a quaternionic 

representation of the payoff function using which he 

classified potential Nash equilibria in these games. 

Landsburg’s construction is based on a specific 

maximally entangled initial state. It turns out, 

however, that there is an entire class of maximally 

entangled states any member of which can be used 

for the “quaternionization” of these games. Here, 

we present a generalization of Landsburg’s 

construction by using an arbitrary representative 

from the class of maximally entangled states and 

classify the potential Nash equilibria in the 

corresponding two player, two strategy games. 

 

Keywords: Quaternions, Quantum Games, Nash 

Equilibria. 

 

 

1. INTRODUCTION 
 

We are concerned with two player, two strategy 

classical games played under mediated quantum 

communication ala Eisert, Lewestein, and Wilkins 

[2]. We discuss our results in the context of the 

formalism for quantized mixtures given in [1]. In 

classical mediated communication, players have a 

referee mediate their game and the communication 

of their strategic choices. When our players have but 

two classical pure strategies to choose from, the 

communication of each player’s strategic choices is 

implemented by the sending of bits to the players, 

put into an initial state by the referee. Presumably 

players then send back their individual bits in the 

other state (Flipped) or in the original state Un-

Flipped) to indicate the choice of their second or 

first classical pure strategy respectively. The 

returned bits are examined by the referee, who then 

makes the appropriate payoffs. 

 

When the communication between the referee and 

the players is over quantum channels, Eisert, 

Wilkens and Lewestein [2] have proposed families 

of quantization protocols (Henceforth referred to as 

EWL protocols) to give players access not just to 

mere probabilistic mixtures of their pure strategic 

choices, but also access to quantum superpositions 

of their original strategic choices. When there are 

two strategic choices for each player in the classical 

game, players and the referee communicate over 

quantum channels via qubits, a two pure state 

quantum system with a fixed observational basis. 

This observational basis is given in the so-called 

Dirac notation by 0  and 1 . This basis also 

induces an observational basis of the space of the 

joint states of the players’ qubits, denoted for the 

two player case in the Dirac notation 

by 0000 =⊗ , 0110 =⊗ , 1001 =⊗  

and 1111 =⊗ .  

 

Each EWL protocol depends on an initial joint state 

of the players’ qubits prepared by the referee. 

General actions on a qubit are represented by the 

elements of the special unitary group SU(2) and for 

our game, the strategic choice represented in 

classical mediated communication by No Flip is 

now represented by the identity transformation in 

SU(2), the strategic choice represented in classical 

mediated communication by Flip is now represented 

by an element of the Lie group SU(2) which 

interchanges the pure states of the original 

observational basis but also maps  the initial joint 

states prepared by the referee  under the various 

profiles of actions of No Flip and Flip to a set of 

mutually orthogonal joint states.  This set of 

mutually orthogonal joint states forms an alternative 



observational basis of the joint state space that the 

referee uses to determine the outcomes, and hence 

the payoffs for each play of the game. In the two 

player case these basis elements of the joint state 

space are written in the Dirac notation 

by NN , NF , FN  and FF .  

 

However, upon receipt of their individual qubits, 

players may choose not just from the matrices 

representing No Flip and Flip but rather from any 

element of the Lie group SU(2) as one of their pure 

quantum strategies (i.e. the Qi’s in the formalism of 

[2]) or even probabilistic combinations therof (i,e. 

the ∆Qi’s in the formalism of [1]) as their strategic 

choice and act on their respective qubit accordingly 

before returning it to the referee. Note that in 

practice the elements of SU(2) here represent 

quantum superpositions of the players’ original two 

strategies, and the mixed quantum strategies are 

regular probabilistic combinations of these 

superpositions. Also note that the players have a 

vastly broader strategic selection in the pure 

quantum strategy game G
Q
 and the mixed quantum 

strategy game G
mQ

, even when compared to the 

already enlarged classical mixed strategy game G
mix

. 

 

The payoffs to each player of each quantum or 

mixed quantum strategy profile are computed by the 

referee by observing the final joint state of the 

players’ qubits with respect to the alternative 

observational basis of the joint state space described 

above and the referee then makes the appropriate 

payoffs. Per the formalism given in [1], this 

procedure describes for each initial state I, a 

protocol QI and a quantized and mixed quantized 

games IQ
G and ImQ

G . 

 

For two players, if the initial state prepared by the 

referee is given in the Dirac notation by 00 , then 

the corresponding EWL protocol is not only a 

complete quantization (see [1]) but is in fact 

equivalent to the classical game G
mix

. But when the 

initial state is given by the  maximally entangled 

state ( ) 2/1100 +=I , the corresponding 

EWL protocol still induces a complete quantization 

of the original game, but is not equivalent to the 

game 
mix

G , and in contrast to the mixed strategy 

situation, the corresponding protocols set up onto 

maps from the appropriate product of the strategy 

spaces to ( ))Im(G∆ , the probability distributions 

over the image, Im(G), of the payoff function for the 

game G. 

 

The next issue to address is the actual computation 

of the specific probability distribution over Im(G) 

that arises from a specific profile of players’ choices 

of elements of SU(2), or worse, a profile of players’ 

choices of probability distributions over SU(2). For 

this task it is useful to employ the quaternions, 

which are a non-commutative, four-dimensional, 

normed real division algebra with canonical basis 

consisting of the real number 1 and units i, j, and k. 

These fundamental units satisfy the so-called 

Hamilton relation 1222 −==== ijkkji . This 

means that each quaternion q can be expressed as a 

linear combination dkcjbiaq +++=  and two 

such are added or multiplied polynomially, subject 

to Hamilton’s relation above. Each quaternion q as 

above possesses a quaternionic conjugate 
∗q with 

dkcjbiaq −−−=∗
.The real-valued multiplicative 

norm (or length) on the quaternions is defined by 

the formula 
22222

dcbaqqq +++== ∗
and all 

non-zero quaternions q possess a non-zero inverse 

||/1 qqq ∗− = . The unit quaternions are those with 

length 1. 

 

For two player games, by appropriately identifying 

each player’s pure quantum strategies with unit 

quaternions, S. Landsburg [3] showed that the 

probability distribution over the outcomes of G 

arising from the profile (p, q) of quantum strategies 

in the game IQ
G can be computed directly from the 

unit quaternion pq by merely squaring the real 

length of each of its canonical components. This 

description additionally provided the computational 

capability to calculate the expected payoffs in the 

game ImQ
G by integrating over the 3-sphere the 

expression pq with respect to the probability 

distributions over the unit quaternions that form a 

strategy profile in ImQ
G . This computational 

capability allowed Landsburg to completely 

determine the potential Nash equilibria of the games 
IQ

G and ImQ
G , that is, the game G played under the 

maximally entangled EWL protocol described 

above. 

 



We present a generalization of Landsburg’s 

construction by using an arbitrary maximally 

entangled state.   

 

 

2. GENERALIZING  THE LANDSBURG 

REPRESENTATION 
 

 

    Figure 1. A Generic Two Player, Two Strategy Game 

 

In this two player, two strategy game (see Figure 1) 

we assume the referee initially sends to the two 

players qubits in the maximally entangled state  

 

( ) 2/1100 θ
θ

i
eI += ,   (1) 

 

where θ  is a real number. The two classical pure 

strategies available to the players are No Flip 

denoted by N, and Flip denoted by F, represented 

respectively by the SU(2) matrices 
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where η  is a unit complex number chosen so that 

the outcome states FFFNNFNN ,,, of this 

game form an orthogonal basis of the state space. A 

direct calculation shows that 
θη iei 224 −= , so 

setting  

 
4/)2( θπ
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insures the orthogonality of the outcome states.  The 

players operate on their respective qubits, the first 

via 

 










−
=

AB

BA
U I     (4) 

 

and the second via 
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respectively. Here A, B, P, and Q are complex 

numbers with 1|||| 22 =+ BA  and 1|||| 22 =+ QP . 

Ignoring the normalization constant 2/1 , after the 

players act, the initial state become with respect to 

the observational basis 
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with respect to the alternative observational basis. 

Hence, up to normalization, the referee observing 

the game state in the alternative observational basis 

sees each pure action state with probability given by 
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Now consider the identification of the group SU(2) 

with the group S
3
, considered as the unit quaternions 

equipped with quaternionic multiplication, via the 

maps 
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where UI and UII are as given above. It is 

straightforward to check that θp  and θq  as above 

are unit quaternions and that the maps given in Eq. 
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(12) and (13) are group isomorphisms for all real 

number θ .  

 

Now suppose that player 1 chooses the unit 

quaternion θp  as defined in Eq. (12) and player 2 

chooses the unit quaternion θq  as defined in Eq. 

(13). If we write the product θθ qp  as  
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where the )( θθπ qpt  are real numbers, then we are 

led to the following theorem 

 

Theorem 2.1. If in the maximally entangled two 

player, two strategy quantum game, player 1 plays 

the pure quantum strategy UI and player 2 the pure 

quantum strategy UII, then the probability 

distribution over the set of outcomes NN, NF, FN, 

and FF is given by 
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The proof is straightforward calculations. Note that 

if the players employ unit quaternions given with 

respect to the standard basis { }kjiB ,,,1= , then 

the probability distributions given above 

become 
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where θM  is the basis change matrix of the 

basis 

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θθ

θ  to the standard 

basis B. This result leads to the following 

definition: 

 

Definition 2.2. Let G be the game depicted in 

Figure 1. Then the associated quantum game  
θIQ

G  is the two player game in which each player’s 

strategy space is the unit quaternions, and the 

payoff functions for players 1 and 2 are defined as 

follows: 
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Note that one can recover Landsburg’s 

representation by setting 0=θ . 
 

 

3. NASH EQUILIBRIUM 
 

It is straightforward calculations to show that the 

mixed quantum strategies  
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and 
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4
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for players 1 and 2, respectively, are best replies to 

each other thereby giving a Nash equilibrium in 

θImQ
G  for all real numbersθ . This equilibrium 

yields to the players expected payoffs that are the 

average of the classical individual payoffs for the 

players.   

 

 

4. CONCLUSIONS 
 

We extended Landsburg’s representation to two 

player, two strategy games where the initial state is 

chosen arbitrarily from a class of maximally 

entangled states with equal superpositions. 
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