
USING CONTRACTS FOR DEVELOPING AND TESTING SOFTWARE SYSTEMS

György ORBÁN
Faculty of Informatics, Eötvös Loránd University

Budapest, Hungary

orbangyorgy@caesar.elte.hu

and

László KOZMA

Faculty of Informatics, Eötvös Loránd University

Budapest, Hungary

kozma@ludens.elte.hu

ABSTRACT

Software development techniques need to be equipped

with quality views too. Quality factors like reusability,

extendibility, compatibility are important factors in

component based development. To support component

based development and to build more reliable software

systems new techniques, methods and tools are needed.

In our paper we discuss recent research areas, available

tools which support the “design by contract”

methodology. The reliability of the components can be

increased using the contracts introduced by Bertrand

Meyer. The number of tools supporting contract based

development is increasing. From the available tools which

support contract based development we choose two one in

Java (Contracts for Java) and one in .Net (Code

Contracts) environment. We also compare these tools and

for this we choose some main point of views like do they

support static code analysis, dynamic checking or can

they help the testing processes. The educational aspects of

contracts are discussed as well.

Keywords: Components; Component Based Design;

Software Testing; Contracts; Design by Contract

1. COMPONENT BASED DESIGN

If we talk about component based development we can

talk about the development of each component and about

the development of the system from components. We will

use the definition of H-G Gross about the component:

“A component is a reusable unit of composition with

explicitly specified provided and required interfaces and

quality attributes that denotes a single abstraction and can

be composed without modification.” [13]

As we can see based on Gross‟s component definition one

of the important attributes of a component is its

reusability. Using components can make the development

process faster. If there are prebuilt components, the

system can be built from them, maybe some glue code, or

a middleware is necessary, so the components can

communicate with each other. For the communication

between the components and between the components

and the environment well defined interfaces are

necessary.

In the paper we will see, how the first level contracts can

help to define the interfaces, but the main parts in the

paper are related to the behavior level (second level)

contracts.

The interfaces which belong to a component are

categorized into two types. The first type is the necessary

interface, which is needed by the component to work

properly. The second type is the provided interface where

the component provides its services.

The KobrA approach addresses the problem that the

Component Based Software Engineering (CBSE) is

typically focused on the component implementation. The

focus in the KobrA method is on the entire software

development process, not just the implementation and

deployment, by adopting product-line strategy, the

creation, maintenance and deployment of components [1].

It is very important to use modeling languages like UML.

Creating the UML model of the component can make the

analysis and design processes component oriented. After

the model based design the components can be

implemented using any of the available component

models CORBA [19], DCOM [25], EJB [26, 27] etc.

The KobrA approach can be used for educational

purposes to because it tries to merge the benefits from

more software development methods OMT [23], Fusion

[5], ROOM [24].

There are three main dimensions in the KobrA

development process. From these three dimensions there

are six basic orientations for the development. These are

composition/ decomposition, abstraction/concretization,

generality/specialization.

When designing a system it will be decomposed into

smaller parts, and when each of the parts are implemented

the whole system can be composed from the components.

Using abstraction and concretization can help to

understand and develop the software system starting from

an abstract model and converging to a concrete

implementation. First a component can be developed in a

generic way and whet it is needed a more target specific

version can be created from it.

Component models

Software systems can be built from different functional

and logical components. Using component models the

components can be implemented separately in different

developer teams. To build the system software support is

needed. This support can be a middleware which runs on

top of the Operating System and provides some

functionality for the components (maybe written in

different programming languages), so they can be

connected together and they can communicate with each

other.

There are many well known component models like

Common Request Broker Architecture (CORBA [19]),

Distributed Component Object Model (DCOM [25]),

Enterprise JavaBeans (EJB [26, 27]), but there are newer

architectures too like ICE from Zeroc [15].

2. DESIGN BY CONTRACT

Design by contract is an approach to design more reliable

software. Reliability is defined here as the “combination

of correctness and robustness” [17] as Bertrand Meyer

suggests it. Reliability is even more important in object

oriented programming and in component based software

development where there are many reusable parts in the

system.

In the development processes classes are defined as

“implementations of abstract data types” [18], but these

definitions are only attributes and routines. With the

usage of contracts the semantic properties can be added to

the definitions. With these axioms the properties written

down in the specification can appear in the software

systems. These can help de developer in the design,

development, debugging and testing processes.

Contracts

The theoretical background of the contracts is the

correctness proof methods of programs, software. A

software system is correct with respect to its specification,

so the software correctness is a relative notion. A

specification can be expressed by assertions [12, 14, 18].

Let P and Q assertions about program variables and S a

statement or a program, then the notation {P}S{Q}

denotes a correctness formula informally meaning that if

P is true before the execution of S, then Q is true after

execution of S. You can find a very good introduction in

Bertrand Meyer‟s book [18] to create and introduce

assertions into software texts. Several proving methods

for sequential and parallel programs have been developed

by this time [12, 14, 16, 20]. At our university there are

lectures related to these methods. These lectures give a

good basic understanding of the contracts and the usage

of the contracts in practice. Practicing these methods the

students will be well-skilled for creating contracts during

developing reliable software from verified components.

One of the main aim of introducing contracts to decrease

complexity [18] because the more complex is a system

the more errors can be in the design or implementation.

Contracts can help because all the necessary checks

related to correctness can be put in the contracts so there

is no need to check these properties in other places in the

implementation.

When defining the behavior of the system with contracts

there are three main variants of them which are

preconditions, post conditions and class invariants. These

variants define obligations and benefits related to the

participants in the system. If there is a provider and a

client in our system the benefit for the provider is an

obligation for the client and vice versa. At the provider

side in the preconditions there are the obligations for the

client. If the client wants some services it needs to satisfy

the preconditions, but if the preconditions are satisfied the

post conditions assure that the provider makes its task

correct which is a benefit for the client, but an obligation

for the provider. With the third kind of contracts

(invariants) we can describe such axioms which must hold

through the execution of the routine, or method.

These main three contracts can be used to define the

behavior of an object when preconditions, post conditions

and invariants are used in the routine implementations.

But when bigger and more complex systems need to be

built, there is a need for more levels of contracts [3].

These contracts can be used to define not only behaviors

in the system, but connection and synchronization related

aspects or quality properties too, between software

components.

Using contracts in the development process can help to

make more correct software but it has documentations

values too. The specifications which are identified at the

analysis phase of the software development process can

be written down by contracts. So it will be easier to check

the working system against the specification. The other

value it adds to the development and debug processes is

that the developer or maintainer can see the specification

in the source code when developing or searching for

errors or bugs [18].

Four levels of contracts: As in real life contracts

can be found in different levels, so the contracts used in

software systems can be available in different levels too

[3]. The main four levels are syntactic level, behavioral

level, synchronization level and quality of service level.

On each level there are different techniques for contracts.

On the first syntactic level IDL can be used to define the

“connectors” between the components. There are many

IDLs that can be used, which one to choose depends on

the system environment and the communication methods

between the parts.

On the second behavioral level using preconditions, post

conditions and invariants the behavior can be defined.

The third synchronization level is needed, because the

first two levels do not recognize for example parallel

executions. The third level contracts specify the

synchronizations between method calls.

The fourth level is for quality of service. This is necessary

to write down contracts related to latency or the precision

of the result. These attributes can be negotiated between

the client and the provider.

Handling the contract violations can be different related to

the level. On different levels if a contract is violated the

program can behave differently it can ignore the violation,

reject it, wait or on the third level negotiation is available

too.

In this paper the focus is on the first two levels, the IDLs

and mostly contracts related to behavior on the second

level. In our tools the contract violation handling is in

most cases exception handling.

Contracts in middleware

To connect different components in a system well defined

interfaces are needed. In a system where the different

components are written in different languages, the

necessary interfaces have to be available on all

programming languages. For this there are many IDLs

(CORBA IDL, Java IDL (Figure 1), Slice [15], etc.).

From these IDLs interfaces can be generated for the

different components. These interfaces will connect

together the software system built from different

components.

interface MultiplyNumbers{
 void multiply(in int a, in int b, out double result);

};
Figure 1: Java IDL

The simple IDL (Figure 1) is an interface description

where the multiply method has two input parameters „a‟

and „b‟ and an output parameter the result.

There are different kinds of middleware‟s like Babel [2,

8]. Babel was developed to be a common middleware for

components implemented in different programming

languages. For the supported programming languages an

interface could be generated from a SIDL (Scientific

Interface Definition Language) so they could

communicate with each other through the middleware.

SIDL is extended for scientific applications with the

support of dynamic multi-dimensional arrays, complex

numbers, In-process optimizations, etc. These extensions

were necessary for the scientific community to develop

applications.

There is also an opportunity to use contracts in the SIDL

specifications so the generated interfaces for the different

languages will contain the contracts. The usage of

contracts in interfaces makes available to check whether

the connected components can interact, communicate

with each other.

Support for contracts in different programming

languages

There are many programming languages (Eiffel, D,

Lisaac, Spec#) which support design by contract in a

native way. These languages were designed to support

contracts. These contracts are on the second level, so they

define the behavior of the component.

Recently there are many third-party tools that can add the

opportunity to use contracts in the software

implementation phase for programming languages which

does not support the contracts in a native way. There are

tools for C/C++, C#, Java, Python. In the next chapter

there is an introduction of two tools which support

contracts in Java and .NET programming languages.

The common part in almost all of these extensions of

languages, that they use the keywords require, ensure and

invariant for the contracts. The require keyword means

the precondition, the ensure means the post condition and

the invariant means the class invariants. There are some

other special keywords, but these may differ in different

programming languages, these are the old and the return

keywords. The old keyword refers to the value of a

variable when the method execution starts, and the return

keyword refers to the return value of the method. With

these keywords more meaningful post conditions can be

written related to the methods behavior.

Contracts and security

If a software system is built from components it is very

important to know how these components will work

individually or together in a common environment.

Contracts can be used for checking the components

behaviors. Security properties can be structured in

different ways. Like properties relate to security

functionality, software quality, monitoring, certification.

Based on security properties four different kinds of

security related contracts can be identified. These are

functional interaction, interaction protocol, security-

specific interaction and infrastructure [28]. Using single

level contracts to create secure systems is not enough

when creating big or complex systems different levels of

contracts are necessary.

3. CONTRACTS IN DEVELOPMENT,

DEBUGGING AND TESTING

As we see many programming languages support

contracts in the development processes. The usage of

contracts in software development spreads slowly, but

there are many research projects related to develop and

create tools which support very well the contract based

development.

From the development view contracts can be useful in the

source code. There is a connection between Test Driven

Development and Contract Based Development. In both

cases the tests and contracts can be written before the

actual implementation. The contracts and the tests are

created based on the specification. Using contracts the

source code contains the specification. Changes in the

specification and so in the contracts have immediate

impact on the source code.

When contracts document the specification in the source

code, it will be available for the later code maintainer, and

also if the component with contracts will be reused in

another system, makes the search for errors or bugs

easier, and helps the component integration into new

systems.

In this paper we focus mainly on two (Contracts for Java

[4], .NET Code Contracts [6]) tools which support the

contract based development. Both tools are under

continuous development. There is a short introduction of

the tools followed by a comparison.

Java environment

Contracts are supported in Java too. There are many

projects (Modern Jass, Contracts4J, jContractor) related to

develop contract support for java. These projects were

started formerly but there are some projects where the

further development stopped for some reasons. There is a

project under continuous development the Contracts for

Java. Contracts for Java [4] is based on Modern Jass with

an enhanced version of compilation model. Their goal is

to develop a robust standalone framework dedicated to

contract programming in Java. Contracts for Java consists

of three parts an annotation processor, an instrumentation

agent and an offline byte code rewriter. Contracts can be

written into the java source code (Figure 2).

interface MultipleNumbers{
 @Ensures({“a>=0”, “b>=0”})
 void multiple(int a, int b);
}

Figure 2: Contracts for Java

There is a precondition in the example, that the multiplied

numbers „a‟ and „b‟ must be larger or equal to zero.

.NET environment

Microsoft Research develops an extension for the

Microsoft Visual Studio which supports contract based

development for .NET programs. There is a simple

example for the usage of Code Contracts [6].

public void AddToList(int num)
{
Contract.Requires((num > 5) && (num < 10));
Contract.Ensures(list.Count ==
(Contract.OldValue(list.Count)+1));

list.Add(num);
}

Figure 3: Simple .Net 4.0 source code with method

precondition and postcondition

This simple method (Figure 3) adds a number to a list, but

with the precondition and post condition checking the

behavior of the method is available. With the precondition

(requires) the value of the input number is checked and

with the post condition the method behavior is ensured. In

this case the method can add the number only once to the

list, so in the post condition the count of the list is

checked that it was increased by one.

4. COMPARISON OF CONTRACT BASED

DESIGN TOOLS FROM DIFFERENT

ASPECTS

The tools we compare in this paper is the Microsoft Code

Contracts integrated into Microsoft Visual Studio 2010

and the Contracts for Java extension. The main aspects of

comparing are how the extensions support static analysis,

dynamic checking, the testing processes and

documentation, document generation.

Static analysis

Static analysis is performed without executing the

software. The analysis can be made by an automated tool,

or manually by another developer. Right now we focus on

automated tools. Static analysis may include finding

coding errors or formal methods to prove properties based

on the specification.

Contracts for Java does not support static analysis only

dynamic contract checking is available.

Using the Microsoft Visual Studio and the Code

Contracts extension it is available to make static analysis

during the development process. With static analysis the

source code is analyzed at compile time, so finding errors

is available before the software execution. Fixing the

errors can be made earlier and faster especially if the run

environment is big and complex. The static checker can

decide if there are any contract violations without running

the program. It can check implicit and explicit contracts.

Implicit checking contains null dereferences or array

bounds checking.

Dynamic checking

Dynamic checking is a runtime activity. The analysis is

performed when the program is executing.

Contracts for Java supports only dynamic checking. When

a contract is broken a java exception is thrown. There are

two techniques for contract checking.

Using the first technique a separate file is generated at

compile time for the contracts. The checking of contracts

is made with the usage of java agents at runtime. This has

some advantages, because the contracts can be handled

separate from the source code, which makes easier the

later reuse of the contracts. Also the application source

code can be built separately.

The other technique is an offline byte code weaving.

Where the generated separate contract file is weaved into

the programs byte code before execution, and the

contracts are checked runtime, there is no need for java

agents, and so there are no Contracts for Java

dependencies.

With the Microsoft Code Contracts a binary rewriter

modifies the software injecting the contracts so they are

checked at runtime.

Documentation (document generation)

The usage of contracts in the source code is already some

type of documentation. The contracts contain the

specification of the software system, so it can help the

developers, and the maintainers to understand the

semantics of the software system.

Contracts for Java supports the extension of classes and

interfaces with contracts, so it is available to create

documentation in the source code with contracts.

Microsoft Code Contracts also supports the

documentation in the source code but it is available to

generate external documentation from the contracts in the

source code. With the document generation it is easier to

maintain the documentation related to the software. The

modifications in the specification, in the contracts can be

updated faster in the additional documentations.

Testing

To support software testing is very important. Contracts

can help in the development processes, but they can be

used in testing too. Contracts can help in white-box

testing. With the usage of contracts more meaningful tests

can be created.

The exceptions can help to find errors, because if there is

an exception related to the precondition, the client who

tries to access a given service made an error, because the

input is not appropriate. If there is an exception related to

the post condition there is some error in the service

provider, so the error investigation should be there. The

usage of contracts can help to find the errors easier.

In java environment jUnit can be used to create unit test.

If there is a contract violation a java exception is thrown.

Code Contracts can be connected to support the test phase

of a software system with another extension for the IDE,

the Pex tool [21]. Pex is an automated parameterized unit

test generator for .NET programs. With Pex automatic test

generation is available with high code coverage. It is also

a research project. These two tools can work together so

when Pex is analyzing the source code to generate tests it

considers the contracts so there can be more meaningful

test cases generated.

Like in Figure 3., there is a precondition which says that

the input parameters can be integers between five and ten.

With this contract information Pex can generate

automatically parameterized unit tests related to the input

values.

Figure 4: Automatically generated test cases by Pex

Pex generates automatically test cases with input values 0

and 6 (Figure 4). If the input value is 0 a

ContractException is thrown, if the input value is 6 there

is no exception, the method can be executed properly

based on the given precondition. With these values Pex

tries to cover every available execution paths.

5. USAGE IN EDUCATION

There are some courses at our university where the

students can learn about the correctness proof methods of

sequential and parallel programs, or how to build

component based software systems and verify them.

During their studies they develop skills for applying

development methods and tools for building software

systems from verified components. In the lectures the

students learn about partial and total correctness of

structured programs by Hoare methods,

To create verified software systems formal methods can

be used. These methods, like those based on temporal

logic or Floyd‟s and Hoare‟s methods for proving

correctness need the necessary mathematical background

and the tools which support formal specification and

verification at model or implementation level. Extending

these more abstract methods to create correct, verified

software systems contract based design tools can add a

more practical approach. These are needed to turn an

abstract representation of the system into a more concrete

representation, for example an executable, deployable

component.

To figure out which tools support the best these

approaches the comparison of the available tools is

needed.

Contracts for is available for free, but it has not so many

features like Microsoft Code Contracts and it is a newer

project. It is quite easy to setup the development

environment and it can be integrated into the Eclipse IDE

[9]. With the usage of annotation processing in the

Eclipse IDE it is much easier to write contracts, because if

there is some missing variable in the contract IDE will

indicate it.

In contrast to Contracts for Java, Code Contracts is not

free but it supports more techniques static analysis,

document generation and more meaningful test cases with

Pex.

These tools can help the developers to write more formal

specifications with contracts, based on the requirements.

They can help to create software systems with better

quality. The process of the contract based development

could be similar to test driven development, when the

development of test cases precedes the implementation.

Contract based development could be made as test driven

development, where the developer starts the development

with the test cases and after the tests comes only the

actual implementation of the methods. Using contract

based design the contracts could be created first. After

validating these contracts they can be used in the

developed system.

Contract based development could be part of software

quality lectures or lectures related to software testing also.

6. CONCLUSIONS

There are many continuously developed tools

(EiffelStudio [11]) and programming languages (Eiffel

[10], D [7], Python [22], etc.) which support the contract

based development. Further research is necessary to

compare more available tools and functionalities they

support. These tools can help during software

development, testing including debugging and

maintenancing. The contracts could be used in the debug

code to help find errors.

Building the different components with contracts a built

in checking is available for the components. This type of

checks can be very useful during integration tests when

the components are composed into a software system, in

such cases when a component is changed in the system, or

if the component has to work in a new environment.

Contract based development should be used to create

more reliable and better quality software.

7. ACKNOWLEDGEMENTS

The Project is supported by the European Union and co-

financed by the European Social Fund (grant agreement

no. TAMOP 4.2.1./B-09/1/KMR-2010-0003).

8. REFERENCES

[1] Atkinson, C., Bayer, J. and Muthig, D. 2000. Component-

Based Product Line Development: The KobrA

Approach. SOFTWARE PRODUCT LINE CONFERENCE,

289--309. 2000.

[2] Babel Homepage: 2010.

https://computation.llnl.gov/casc/components/index.html.

Accessed: 2011-06-19.

[3] Beugnard, A., Jézéquel, J.-M., Plouzeau, N. and Watkins, D.

1999. Making Components Contract Aware. Computer.

32, 7 (júl. 1999), 38–45.

[4] cofoja - Contracts for Java:

http://code.google.com/p/cofoja/. Accessed: 2011-08-31.

[5] Coleman, D. Object-Oriented Development. The Fusion

Method. Prentice Hall., 1994.

[6] Contracts - Microsoft Research: 2011.

http://research.microsoft.com/en-us/projects/contracts/.

Accessed: 2011-06-18.

[7] D Programming Language: http://www.d-programming-

language.org/index.html. Accessed: 2011-09-14.

[8] Dahlgren, T., Epperly, T., Kumfert, G. and Leek, J. Babel

Users’ Guide., 2009.

[9] Eclipse: http://eclipse.org/. Accessed: 2011-08-14.

[10] Eiffel Software: http://www.eiffel.com/products/.

Accessed: 2011-09-14.

[11] EiffelStudio: http://www.eiffel.com/products/studio/.

Accessed: 2011-09-14.

[12] Floyd, R.W. Assigning Meanings to Programs.

Proceedings of Symposium on Applied Mathematics. 19,

(1967), 19-32., 1967.

[13] Gross, H.-G. Component-based Software Testing with

UML. Springer-Verlag., 2005.

[14] Hoare, C.A.R. 1969. An axiomatic basis for computer

programming. Communications of the ACM. 12, (oct.

1969), 576-580.

[15] Ice, Zeroc: http://www.zeroc.com/. Accessed: 2011-08-31.

[16] Manna, Z. Mathematical Theory of Computation.

Mcgraw-Hill College., 1974.

[17] Meyer, B. Applying „design by contract”. Computer. 25,

10 (oct. 1992), 40-51., 1992.

[18] Meyer, B. Object-Oriented Software Construction,

Second edition. Prentice Hall., 1997.

[19] Object Management Group History of CORBA,

Technical Report., 1997.

[20] Owicki, S. and Gries, D. An axiomatic proof technique

for parallel programs I. Acta Informatica. 6, (1976), 319-

340., 1976.

[21] Pex, Automated White box Testing for .NET -

Microsoft Research: 2011.

http://research.microsoft.com/en-us/projects/pex/.

Accessed: 2011-06-18.

[22] Python zope.interface:

http://pypi.python.org/pypi/zope.interface/. Accessed:

2011-09-14.

[23] Rumbaugh, J. Object-Oriented Modeling and Design.

Prentice Hall., 1991.

[24] Selic, B. Real-Time Object-Oriented Modeling. Wiley.,

1994.

[25] Sessions, R. COM and DCOM : Microsoft’s vision for

distributed objects. Wiley., 1998.

[26] Sun Microsystems Enterprise JavaBeans technology

specification, version 2.1 – final release. Technical

Report., 1995.

[27] Sun Microsystems JavaBeans component architecture

documnetation, Technical Report., 1995.

[28] De Win, B., Piessens, F., Smans, J. and Joosen, W. 2005.

Towards a unifying view on security contracts.

Proceedings of the 2005 workshop on Software

engineering for secure systems---building trustworthy

applications - SESS ’05 (St. Louis, Missouri, 2005), 1-7.

