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Abstract 
 

In this paper, we demonstrate how our research 
findings regarding fractal tilings arose through the 
teaching of a geometry course, and describe the 
mathematical relationships between the content of the 
geometry course and our research results. We share 
this delightful experience and demonstrate how 
research can be closely related to teaching activities in 
university. 
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1. Introduction 

 
The geometry course at the National Kaohsiung 
Normal University covers Euclidean and fractal 
geometry. Because these students will eventually 
become teachers in high school, a number of 
interesting subtopics of Euclidean and fractal 
geometry are also taught, including tilings, polyhedra, 
the Golden ratio, and fractals. Students are provided 
the opportunity to explore the properties of geometry 
using dynamic geometry software, such as GSP and 
GeoGebra, as well as computer algebra systems, 
including Maple. After teaching the above content for 
two years, the author sought to expand the curricula 
with new materials related to tilings using fractal 
shapes. This opened a door to the newly develop field 
of fractal tilings.  
 
The internet provides many sources of information 
related to the topic of fractal tilings; however, this new 
field is scarcely touched upon in textbooks on 
geometry or fractals. The research results of the author 
include a rigorous definition of fractal tilings in [1] 
and an algorithm with which to generate self-similar 
forms in [2]. The exploration of research questions in 
this geometry course has proven highly rewarding, 
both for instructors and students, particularly with 
regard to the invention of new fractal shapes using 
Maple by students. In this paper, we share this 
delightful experience and demonstrate how research 
can be closely related to teaching activities in 
university. 
 
About the relationship between research and teaching, 
in [3,4] McNay, Healy et al. indicated the trend of 
separation of research and teaching in university 
“Structural changes: research centres housed staff 

freed from teaching responsibilities; graduate schools 
became the arenas for research, leaving department to 
organize undergraduate teaching. Each of these 
[developments] was particular and peculiar, but the 
trend was gradually of a separation, structurally of 
research from teaching”. 
 

More recently, one of the topics to study linking 
teaching and research is called “The Research 
informed Teaching (RiT)” introduced in the homepage 
of Staffordshire University in United Kindom as 
"...recognise the importance of the reciprocal 
relationship between teaching and research in 
enhancing the students’ learning experience In the 
University Research and Enterprise Strategy, for 
example, it is stated that applied research activity will 
underpin the student experience through its support of 
learning and teaching, and many staff already make 
good use of their research in the teaching context ." It 
shows that the trend of linking research and teaching 
is obvious.  

In [5,6,7] the typology of teaching-research links was 
developed as 1.Teaching can be research-led  2. 
Teaching can be research-oriented 3. Teaching can be 
research-based 4. Teaching can be research-informed. 
In the geometry course, we conducted students to 
understand the processes by which fractal knowledge 
is produced and learn how to simulate fractals by 
Maple programming. So our course should fall on the 
second category of this typology. It was the teaching 
experience in this course that made the author invent 
new results about the fusion topic of tilings and 
fractals. The remainder of this paper is organized as 
follows: Section2 describes the main ideas of  tilings 
and fractals, and the computer simulation of fractals 
with Maple by students. Section 3 describes our 
published research results about fractal tilings. And 
the conclusion is given in Section 4. 
  

2. Geometry Course Teaching 
 
The geometry course is taught three hours per week 
for two semesters. The first part of the second 
semester is devoted to the geometry of tilings and 
fractal geometry is covered in the second. The need to 
make these topics comprehensible to students led the 
author to develop a novel fusion of tilings and fractals. 
In the following subsections, we outline the main 
ideas of these two topics in detail. 
 
 



Tilings 
We review here some definitions of tilings in the book 
by Grünbaum and Shephard [8].  
 
Definition 1. A plane tiling Τ  is a countable family 

of closed topological disks 
1 2

{ , , }T TΤ = ⋯ , which 

cover the plane without gaps or overlaps. More 

explicitly, the union of the sets 
1 2
, ,T T ⋯  (which are 

known as the tiles of Τ ) spans the entire plane, and 

the interior of the sets 
i

T  are pairwise disjoint. A 

closed topological disk means a set homeomorphic to 
a closed circular disk. 
 
Definition 2. A monohedral tiling Τ  is a tiling whose 
tiles are all the same size and shape, i.e., 

1 2

congruent congruent

T T≅ ≅ ⋯  . 

 
 
Fractals with Maple Simulation 
We see in the sequel that students presented their 
Maple codes to simulate their own designed fractals in 
the computer room.  
 
At first we need review some notations and 
terminology for fractals. As an example, if we want to 
generate a von Koch curve we assign proper mappings 

1 2{ , , , }nφ φ φ⋯  to constitute an iterated function 

system (IFS) [9]. We define the initiator and the 
generator as in [10]. 

We denote ( , )H A k  to be a scaling with center A  

and scaling ratio k  , that is, ( , )( )H A k B C=  means 

that , ,A B C  are collinear and AC
k

AB
= . ( )ABT C  is 

defined to be a translation so that if ( )ABT C D=  then 

/ / ,CD AB CD AB= . ( , )R O θ  is a rotation with 

center O  and angle θ .  

Let 
1 2 3 4{ , , , }ϕ ϕ ϕ ϕ  be such that: 

1

1
( , )

3
H Aϕ = , 

2

1
( , ) ( , )

3 3
ACR C T H A

π
φ = � � ,

3

1
( , ) ( , )

3 3
ACR E T H A

π
φ = − � � ,  

4

1
( , )

3AET H Aφ = � ,  

and define  

1
( ) : ( )

n

i
i

B Bφ
=

Φ = ∪ . Then the von Koch curve 

is: lim ( )n

n
A U

→∞
= Φ� , see Fig. 1.  
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                          Fig. 1 
 
We showed at first the Maple codes of Sierpinski 
carpet in [11] to students then explain the meaning of 
the codes in brief  to them in computer room. 
> restart; 
> serp3:=proc(L::algebraic, lev::integer,x0::algebraic, 
y0::algebraic) 
local i,j; 
global p,s; 
options remember; 
if s=0 then 
p[0]:=plots[polygonplot]([[x0,y0],[x0,y0+L],[x0+L,y0
+L],[x0+L,y0]],style=line): 
fi; 
s:=s+1; 
p[s]:=plots[polygonplot]([[x0+L/3,y0+L/3],[x0+L/3,y
0+2*L/3],[x0+2*L/3,y0+2*L/3],[x0+2*L/3,y0+L/3]],c
olor=blue): 
if lev >1 then 
   for i from 0 to 2 do 
       for j from 0 to 2 do 
            if abs(i-1)+abs(j-1) >0 then  
               serp3(L/3,lev-1,x0+i*L/3,y0+j*L/3); 
            fi; 
       od; 
    od; 
fi; 
RETURN(plots[display]([seq(p[i],i=0..s)],scaling=con
strained)) 
# In fact s=(8^lev-1)/7. 
end: 
> s:=0;serp3(100,3,0,0); 

s :=0 



 
Fig. 2 

 
Fig.2 is the running result graph of the above maple 
codes.. 
 
Then we showed the variant codes to get modified 
Sierpinski carpet as in the fig. 3 to let the students 
know more clearly how the codes work. 
> serp2:=proc(L::algebraic, lev::integer,x0::algebraic, 
y0::algebraic) 
local i,j; 
global p,s; 
options remember; 
if s=0 then 
p[0]:=plots[polygonplot]([[x0,y0],[x0,y0+L],[x0+L,y0
+L],[x0+L,y0]],style=line): 
fi; 
s:=s+1; 
p[s]:=plots[polygonplot]([[x0+L/3,y0+L/3],[x0+L/3,y
0+2*L/3],[x0+2*L/3,y0+2*L/3],[x0+2*L/3,y0+L/3]],c
olor=green): 
if lev >1 then 
   for i from 1 to 2 do 
       for j from 1 to 2 do 
            if abs(i-1)+abs(j-1) >0 then  
               serp2(L/3,lev-1,x0+i*L/3,y0+j*L/3); 
            fi; 
       od; 
    od; 
fi; 
RETURN(plots[display]([seq(p[i],i=0..(3^lev-
1)/2)],scaling=constrained)) 
end: 
> s:=0;serp2(100,4,0,0); 

s := 0 

  
Fig. 3 

 
Then we assigned homework to all student teams to 
design (invent) and simulate their fractals with Maple 
programming. We found the students could design 
their fractal shape by modifying the codes in [11] and 
by repeating computer simulating. The following Fig. 
4-Fig. 7 are part of photos of students while presenting 
their homework in computer room. 
 

 
Fig. 4 One team was presenting their Maple codes and 
designed fractal in computer room. 
 
 

 
Fig. 5 The detail of the designed fractal in the above  
figure. 
 



 
Fig. 6 The Maple codes of a designed fractal by 
another team. 
 

 
Fig. 7  Another team was preparing the presentation. 
 

3. Research Results 
 
After teaching the above topics about fractals and 
tilings in Geometry course, the author presented some 
research results about fractal tilings in [1,2]. We state 
the results in the following in brief.  
 
In [12] they suggested a way of generating a fractal 
tiling; they give the following intuitive definition for a 
fractal tile.  
 
Definition 3. A fractal tile is a tile whose boundary is 
composed of fractal curves, or say, a topological 
closed disk with fractal boundaries. 
 
In [1] we give a rigorous definition of fractal tilings. 
At first we review a prefractal [13]. 
 
Definition 4. A prefractal is the intermediate shape 
for generating a fractal using the IFS method.  
 
Then we give the definition of prefractal tilings. 
 
Definition 5. Given a tile with fractal boundary , we 
denote the tile by T and its fractal boundary by Γ . We 
define the (kth) prefractal tile of  T to be a set (tile) 
with (kth) prefractal of Γ  as boundary. 
 

The following is a rigorous definition of fractal tiling 
presented by the author in [1]. 
 
Definition 6. A tile with fractal boundary can tile the 

plane if its every k th prefractal tile can tile the plane 

for everyk N∈ . If so, we call this tile with fractal 
boundary a fractal tile. 
 
Another research results in [1] included five methods, 
including Escher’s tiling pictures methods and the 
Conway criterion to create the fractal tilings. By the 
results in [1] it is easy to check the well-known fractal 
fudgeflake to be a fractal tilings see Fig 8. . 

 
Fig. 8 The fudgeflake as a fractal tilings 

 
Our another research result is an algorithm to generate 
fractal reptiles [2].  
Definition 7. A k-rep tile is defined as any set T  that 
can be dissected into k congruent parts 'T  each of 
which is similar to T . If the above T  is disk-like, 
then we say that T  is a disk-like k-rep tile. A fractal 
tile is called a fractal k-reptile if it is a k-reptile.   
 
Sphinx is a famous example of a 4-rep tile. It is well 

known that the Sierpinski gasket constitutes of 3n
 

copies of small congruent one for any n ∈ℕ . So the 

Sierpinski gasket is a non-disk-like 3n
-rep tile for any 

n ∈ℕ . 
 
We investigate a well known process to generate 
Gosper snowflake (Gosper island). With the aid of 
Escher-style rules we can realize more deeply why this 
process works. The investigation proceeds as follows. 

The 0th step we begin with a hexagon 0G  (Fig. 9). 

We can call it the initiator. Step 1. we use 7 congruent 

hexagons scaled from 0G  to form the new polygon 

called 1G . For convenience we denote the scaled one 

also by 0G  in the figure. We can see that because 1G  

is modified from a hexagon by the Escher parallel 

translation rule, it follows that 1G  can tile the plane 

well. We need the dashed hexagon attached to 1G  to 



indicate the relative position. We call it the referenced 

hexagon of 1G  (Fig. 10). Step 2. shrink 1G  as small 

as the scaled 0G  in 1G  and replace every small 0G  

by scaled 1G  by coinciding the referenced hexagon of 

1G  with small 0G  to form 1G . Here we can see that 

2G is modified from 1G  by the Escher parallel 

translation rule. So we know that 2G  can tile the 

plane as well (Fig. 11). Step 3 Similarly, we replace 

every small 1G  in 2G  by scaled 2G  to get 3G . 

Continue this process indefinitely to get the 
convergent shape which is the Gosper snowflake.  

0G

     
Fig. 9 Step 0: Choose a hexagon as the initiator 
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Step1: Find a generator which is satisfied with Escher  
rules. 
Fig. 10 Find suitable initiator and generator of Gosper 
snowflake. 
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Fig. 11 Step 2: Replacing 0G  with 1G  to get 2G . 

 
 

With the aid of the above investigation, we can 

provide an informal proof as follows. Let ,n kG  denote 

the scaled previous generation shapes in 1nG + . 

Because 1 ,
1, ,7

n n k
k

G G+
=

= ∪
⋯

 for every n ∈ Ν , with 

no overlap and no gap. Taking limit on both sides to 
get 

Gosper= 1 ,
1, ,7

lim limn n k
n n k

G G+
→∞ →∞ =

= ∪
⋯

,
1, ,7 1, ,7

lim n k
k n k

G
= →∞ =

= ∪ = ∪
⋯ ⋯

small Gosper 

For the no overlap and no gap union we get that the 
Gosper snowflake is a 7-reptile. 

Base on the above investigation and Escher-style 
rules we can now present an algorithm to generate 
fractal reptiles. We find the key point is a criterion 

with which the polygon initiator 0P  and the polygon 

generator 1P  must satisfy.  

 

Criterion 1. Several congruent scaled-down 0P  can 

be joined together to form 1P , i.e., 
1 0

1

m

k
k

P P
=

= ∪  where 

0kP  is congruent to a scaled-down 0P , such that 1P  

is modified from 0P  according to some Escher-style 

rule or Conway criteria. 
 

Algorithm for generating fractal reptiles: 

Step 1. Choose a polygon 0P  (initiator) and a polygon 

generator 1P  which satisfy criterion 1. Then we 

should attach a referenced 0P  on 1P  ( as stated in the 

above Gosper example) to proceed the next step. 

Step 2. Replacing every 0kP  in 1P  by scaled-down 

1P  to form 2P . The Escher-style rule promises that 

the union is no overlap and no gap. Also we need to 

attach a referenced 0P  on 2P  for the successive 

replacing process. 
Step 3. Continue similar way in Step2 indefinitely to 
get a limit set which is a fractal m-reptile.   
 

4. Conclusion 
 
In this paper, we demonstrate how our research 
findings regarding fractal tilings arose through the 
teaching of a geometry course, and describe the 
mathematical relationships between the content of the 
geometry course and our research results. This 
experience is a poignant demonstration of the close 
relationship between research and teaching. 
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