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Abstract 

 
The Harmony Search Algorithm (HSA) is a recently 

constructed algorithm that is based on the improvisation 

process that musicians often demonstrate in performances 

[1],[2]. In the HSA each musician plays a note in an effort to 

find the best harmony with his/her fellow musicians. In the 

context of Computer Science, this improvisation process 

corresponds to a decision variable (musician) generating a 

value in order to find a best global optimum solution (a 

pleasing harmony).  The HSA involves three possible 

choices; repeating a tune or pattern exactly from memory, 

repeating a tune or pattern with slight variation of one or two 

variables (adjusting the pitch slightly), or using new random 

values or notes. Geem [1],[2] formalized these processes as 

harmony memory, pitch adjusting, and randomization. 

Recently the HSA has been applied to neural networks. This 

has been done in two ways. Firstly, by modification of the 

weights of the neural network by using the HSA as the 

network is trained, and secondly by using the HSA as a post-

processing tool as a way to reduce the chances of selecting a 

sub-optimal solution. 

We propose using the HSA in a new way and on a new 

generation of neural networks. Spiked Neural Networks 

(SNN) [3],[4],[5] encode information according to the 

temporal differences and correlations between spike trains. 

This new type of neural network is not only biologically 

more realistic than other neural networks; we propose that 

SNN have a natural symbiosis with the HSA. 

 

Keywords: harmony, search, spiking neural, speech, 

recognition, hybrid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Harmony Search Algorithm 

 
The Harmony Search Algorithm (HSA) [1],[2] is an 

algorithm inspired by the improvisation processes that a 

group of musicians undertake when they perform together. In 

the HSA each musician plays a note in order to find the best 

harmony at a particular point in time. In the context of 

Computer Science this is equivalent to a number of decision 

variables (musicians) generating values (notes) in order to 

find a global optimum solution (harmony). 

The mechanics of producing a pleasing harmony are as 

follows: 

1. Memory Consideration 

This involves choosing a note (or decision 

variable) from memory. This is often called the 

Harmony Memory Consideration Rate or HMCR. 

2. Pitch Adjustment 

This involves choosing a note (or decision 

variable) from memory and then altering it by a 

small amount (within set bounds). This is often 

called the Pitch Adjustment Rate or PAR. 

3. Random Selection 

This involves playing a random note (or generating 

a new decision variable) within set bounds. This is 

often called Random Selection or RS. 

 

The steps to perform a HSA are as follows: 

 

Step 1)  

Initialize the problem by providing an objective function. 

The HSA tries to find a vector X of size n that matches this 

objective function. Thus we generate k random vectors of X 

where k is equal to the harmony memory size. Therefore 

harmony memory (HM) can be depicted as follows: 

 

Where  is the fitness function of the vector k. 

 

Step 2) 

Generate a new vector for each component  by 

performing the three actions as defined above, they are: 

 

 

mailto:reidd@hope.ac.uk
mailto:barretm@hope.ac.uk


1. Memory Consideration 

Choosing a vector with the probability based on the 

harmony considering rate (HMCR) from HM. 

 

2. Pitch Adjustment: 

With a probability based on the Pitch Adjustment Rate 

(PAR) change the value of  by a small amount: 

   

for discrete variables and  

   

for continuous variables 

where  is the amount between two neighbouring values and 

fw is the maximum limit of change. 

 

3. Random Selection: 

With a probability based on a Random Selection (RS) rate 

change  to an allowable random value taken from HM. 

 

Step 3) 

Update HM. If  is better than the worst vector in HM then 

replace it with  

 

Step 4) 

Check the termination criteria and repeat steps 2-4 if criteria 

not reached. 

 

In this way the HSA mimics the composition rules of 

musicians in order to search for the best solution to a 

problem by using a fitness function. This overcomes many of 

the drawbacks of a Genetic Algorithm [6],[7] in that it 

considers the relationship between values in a more 

sophisticated manner. That is, the Genetic Algorithm only 

works if the relationship in a chromosome are carefully 

considered. (Often Gray coding is used for real values). The 

HSA does not suffer from this limitation as neighbouring 

notes/values can be any value within the allowable range and 

the values themselves say little about their relationship. 

Moreover the HSA, unlike the Genetic Algorithm, has 

implicitly embedded within its workings the concept of an 

explicit temporal memory. These ideas linked to the 

randomization functions means that the HSA is a more robust 

mechanism with which to minimize the chances of a solution 

suffering from divergence or settling on local minima.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Spiking Neural Network 

 
Spiking neurons [3],[4],[5] are a third generation of neural 

networks that use temporal data in order to code information. 

This new type of neural network can be defined as follows: 

Let N be a set of spiking neurons. Let P be a set of pre-

synaptic neurons such that NP , where the axon of each 

Pp j makes contact with the dendrites or soma of each 

neuron  
Nni to form a synapse. A weight 

0,nipjw
 

is given for a synapse, a response function 

RR
ij np :, for each synapse and a threshold function 

RRni :
for each neuron. 

Thus, there exists a set 
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 of K synapses, with each 

synapse ks
forming a connection between each jp

to each 

in
 i.e. 

PxNsk . Each in
 receives a spike at a specific 

time t from each of the pre-synaptic neurons jp
. 

The synapse ks
 receiving this spike will have an inhibitory 

or excitatory response (figure 1(a)). This is the Post Synaptic 

Potential (PSP).   

If the neuron has a threshold set to some specific value iT
 

then it will fire if at time t 

k

n

in Ts
0 (figure 1(c)), whereas if 

this value is less there is no firing (figure 1(b). When firing 

does take place there follows a relative refractory period 

when the possibility of firing again is diminished and also an 

absolute refractory period where there is no possibility of 

firing. 

The PSP function usually approximates the synaptic function 

by using a sharp exponential rise and slower decay in 

response to each spike. In practice the following equation is a 

good approximation: 
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Equation 1. 

where 
)( kSH

 is a Heaviside step function which vanishes 

for 0s  and has the value of 1 for 0s , kS is a 

synaptic time constant and iN is a neuronal time constant.  
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Equation 2. 



In practice we have found that equation 2 is an adequate 

approximation. Learning can be both supervised and 

unsupervised in such a network. Learning in the supervised 

network is usually implemented using the SpikeProp method 

[8]. This is very similar to the error-backpropagation method 

by Rumelhart [9] except that the firing time of the neuron 

in
is shifted by altering its refractory period(s). Thus, 

learning is achieved by temporally co-coordinated firing of 

related neurons. 

.  

     (a) Excitatory and Inhibitory 

 

 
Figure 1. Spiking neuron activity 

Unsupervised learning usually involves selecting a 

neighbourhood around a winning neuron and altering the 

firing times of its neighbours to fire in sympathy with the 

winning neuron. Again, as with SpikeProp, the firing time is 

shifted toward the winning neuron. Distant neurons’ firing 

times are moved away from the firing time of the winning 

neuron. A typical algorithm uses the physical distance to 

determine how firing times should be synchronized with the 

winning neuron. In SNN a number of coding schemes exist. 

They can be broadly classified as follows: 

 

rate coding 
This assumes that the information is contained in the firing 

rate of the neuron. Information about the stimulus is implied 

by the firing rate. As the firing rate generated by a given 

stimulus varies from trial to trial, neuronal responses are 

usually characterised probabilistically using this coding 

scheme. In this coding scheme individual spikes are less 

important than the rate of spiking activity. This has the 

advantage that it is a highly robust (in terms of noise) coding 

scheme but has the disadvantage that it is also highly 

inefficient.  

 

temporal coding 
A temporal code is when precise, or approximate, spike 

timing is assumed to carry information. 

A number of studies have found that the inter-spike intervals 

can be detected on a millisecond time scale in the brain. This 

strongly suggests that precise spike timing is a significant 

element in neural coding. Temporal coding refers to temporal 

precision in the response that also says something about the 

stimulus. The advantage to this type of coding is that it is 

efficient. Information can be carried as the length of time 

between just two spikes, or even the first stimulus to spike.  

A number of coding techniques exist in the 

literature[10],[11], first time to spike, inter spike interval, 

synchronous spiking and spike interval and phase encoding 

(where repeating patterns of activations between neurons is 

used as a way of encoding information) to name but a few. 

However, the interplay between stimulus and encoding 

dynamics makes the identification of a temporal code very 

difficult. Despite this, because of their efficiency, temporal 

coding techniques are by far the most popular method of 

spike coding used in SNN research. 

 

population coding 
This coding technique takes into account the coordination of 

activities of a number of neurons. In population coding, each 

neuron has a distribution of responses over some set of 

inputs, and the responses of many neurons may be combined 

to determine some value. Not only is this biologically 

realistic (the motor and sensor areas of the brain are well 

known to use this coding method) but it also echoes back to 

older neural network research involving self-organising maps 

or topological feature maps. 
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3. HSA-SNN Hybids 

 
It is suggested that the three basic processes in the HSA 

described earlier by Geem are natural candidates for a 

mechanism to correlate, classify and control (at least) two 

aspects of SNNs; that is, the spike trains and the patterns of 

activation of the synapses themselves. Moreover the HSA 

functions can be integrated into the normal working of a 

neuron, or groups of neurons, within a SNN with only slight 

modification to the neuron’s traditional functionality. 

 

harmony spike train tuning 
As previously suggested, we propose that neurons in a SNN 

not only perform a simple leaky integrate and fire function 

(LIF), but also can naturally utilize the three basic processes 

used in the HSA. This can be done by classifying spike trains 

using the HSA and by regulation of those spike trains by the 

HSA. 

In this sense pitch adjustment could correspond to 

modification of the relative, or absolute, refractory period of 

the neuron, thus the allowable rate of frequency of spikes 

would directly correspond to pitch. This is functionally the 

same as rate encoding and temporal encoding as discussed 

earlier. This similarity also extends to randomization in the 

HSA hybrid which would simply be the inclusion or 

exclusion of spikes. Randomization, as with the traditional 

HSA, would ensure that a wide variety of alternatives are 

explored within the neural solution space. Most importantly, 

the incorporation of harmony memory into the spiking 

neuron allows the neuron to recognize/remember previous 

combinations of spike trains (either temporally or by their 

rate). This can be done in two ways; firstly, by the 

simultaneous control of neuronal connections. To this end a 

new Multi-Spiking Neural Network model could be used 

[12]. In this model information from one neuron is 

transmitted to the next in the form of multiple spikes via 

multiple synapses (a rate encoding method; SpikeProp 

learning using HSA). Secondly, a more sophisticated model 

than LIF for the neuron itself could be used. Gestner 

describes the Cumulative Spike Response Model [13]. In this 

model refractoriness and adaptation were affected by the 

combined effects of the spike action potentials of several 

previous spikes, rather than, as with LIF, only the most 

recent spike. Similarly, Gerstner also describes how noise 

(randomness) can be included into the Spike Response Model 

by replacing the strict threshold criterion by a stochastic 

process [14]. Such non LIF based models of the neuron can 

easily incorporate harmony memory processes by allowing 

some preprocessing in the neuron; in other words by using 

the HSA to process the combined activation of a number of 

spikes received in a neuron before making a decision about 

how that neuron should react (what should its threshold be 

set to, what should its refractory period be etc). In other 

words the neuron learns how to behave when given a 

particular set of spike combinations by using the HSA to 

attune itself to that circumstance. For example in Figure 2 

below the repeated pattern labeled a in the incoming spike 

train may cause a change in the values depicted by any of the 

arrows in the PSP. 

 
Figure 2. PSP Influenced HSA 

  

harmony active synapse tuning 
At a courser grained level, the HSA can, as with spike trains 

described above, be used to classify the synaptic activity and 

also be used to regulate the synaptic activity within a system. 

Gütig used this idea in the ―temptron‖ [15] that has its 

theoretical roots in population encoding as described earlier. 

Gütig describes a biologically plausible synaptic learning 

rule that enabled neurons to learn specific decision rules even 

when information was deeply embedded into the spike 

patterns. This work underlined how a system could be built 

that had a high capacity to decode information embedded in 

the distributed patterns of spike synchronicity.  It is 

suggested in this paper that not only is rate coding and 

synchronicity characteristics that are well catered for by the 

HSA (in fact these are fundamental characteristics of the 

functioning of the HSA) but also that other spatiotemporal 

synaptic activity, such as inter spike interval and phase 

encoding, as well as population encoding, are also very well 

served by the HSA.  

For the purposes of this paper we focus on Harmony Active 

Synapse Tuning using the population encoding method 

(although the other methods suggested in this paper are 

equally valid potential areas of research). 
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4. Implementation 

 
A hybrid HSA-SNN was built for this paper that uses 

Harmony Active Synaptic Tuning. This uses a ―mesh‖ of 

connected spiking neurons that are connected to their local 

neighbours and also connected to input neurons that delimit 

the cochlear input frequencies. This is shown in Figure 3. 

 
Figure 3. Neural Influenced HSA 

In Figure 3 the input ―cochlear‖ (in this case only 

corresponding to 4 frequency ranges) fire at different times, 

each time transmitting a spike to the neural ―mesh‖. The 

―mesh‖ synapses compete for activation by suppressing 

neighbouring neurons activation and heightening their own 

sensitivity to the specific patterns of activation form the input 

―cochlear‖. Both the synapses connected to the input 

cochlear neurons and the neural activation of the ―mesh‖ 

neurons are subject to, and influenced by, the HSA. In this 

way the input synapses, and by implication the synapses 

connected to each neurons neighbours, are tuned by both 

spike activation and by HSA mediation. 

We used this architecture in order to classify simple 

instructions to control a computer game/robot functioning in 

a classroom environment. In this system we used a SNN to 

respond to different frequencies in order to pre-process the 

speech signal in a similar fashion to the cochlea. The HSA 

uses the firing rates of the discrete neurons in order to 

recognize the spoken words. This was done to allow the SNN 

and the HSA to function together in order to provide both an 

effective noise filter whilst simultaneously providing a robust 

recognition system.  

The system described was written in the Processing language 

and as a preliminary test was used to classify different 

patterns of on a 8 bit ―cochlear‖ (corresponding to 8 

frequency ranges).  A simple 8x8 mesh of neurons was used 

to classify patterns emanating from the input cochlear. As a 

initial experiment, primarily in order to test the basic code 

functionality, the words used where the simple utterances 

―up‖, ―down‖, ―left‖, ―right‖, ‖stop‖ and ―fire‖. These where 

recorded as different combinations of bit patterns on the 8 bit 

input ―cochlear‖ where each bit position represented a 

specific frequency. These patterns where then classified by 

competitive activation of the neural mesh and by feedback 

from the HSA.  

In the system the HSA was used for two basic functions.  

1. To filter, separate and ―pre‖-classify the input spike 

trains, making it easier for the subsequent 

competitive SNN to recognise the result 

2. To use the HSA to classify the activation of firing 

of the synapses in the neural mesh itself. 

The screenshot in Figure 4 shows the system in action. Here 

the word ―up‖ has been classified in the mesh by using a 

competitive SNN using HSA tuning. In this particular 

example the HSA has filtered the spike trains by classifying 

the activity of each input bit frequency during the training of 

the system (up was entered 10 times). As result of this the 

neuron 21 and 26 are maximally activated. It is these 

combinations of neuron activations that are subsequently 

used in the HSA in order to perform the final classification 

(in this experiment this training was also performed 

continuously). 

 

 
Figure 3. The HSA-SNN System 

This very simple prototype serves two purposes. Firstly, in 

testing and exploring the symbiosis of the two technologies 

(HSA and SNN); secondly, in showing that this application 

area suited this symbiosis. On both counts the engine has 

indicated that both of these criteria have been met. Similarly 

experimentation with the engine has suggested that the model 

could fairly easily be extended and applied to other 

application areas. 
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5. Conclusion 

 
The paper has demonstrated that not only is a HSA SNN 

hybrid a feasible symbiosis of technologies but that it is a 

natural one. Both technologies can be combined in an 

effective manner to create a potentially powerful 

classification engine. This is principally because both 

technologies use at their core the temporal nature of the data 

as a significant part of their functionality. While the 

implementation provided for this paper was a ―proof of 

concept‖ it is envisaged that these ideas could be easily 

extended. This could be done in two ways; firstly by 

extending the model presented here. This could be done 

altering the parameters of the engine, for example altering the 

number and behavior of the SNN or the characteristics of the 

HSA; and secondly, by parallelizing the engine. At the 

moment we are particularly interested in implementing the 

model on a XMOS system in XC. Similarly we hope to 

implement the model in an FPGA using a Virtex 6 board in 

HandleC and investigate running the model on GPU using 

OpenCL.  

The example used in this paper is very small scale. It is a 

very simple speech recognition task. However, the engine 

itself can be applied to a number of other types of 

application. At present we are examining extending this 

engine for a novel vision system, for use in self organizing 

robots and for novel data mining and business intelligence 

applications. In short, now we have seen that the simple 

prototype engine confirmed that symbiosis between the 

technologies is a potentially profitable one we are currently 

extending the engine into different application areas. 

However, for the present time we are currently translating the 

Processing code into XC code for parallelization on XMOS 

chips in order to build a more sophisticated speech 

recognition engine. 
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