
Using a Harmony Search Algorithm/Spiking Neural Network Hybrid for

Speech Recognition in a Noisy Environment

David Reid Mark Barrett-Baxendale

Liverpool Hope University Liverpool Hope University

 reidd@hope.ac.uk barretm@hope.ac.uk

Abstract

The Harmony Search Algorithm (HSA) is a recently

constructed algorithm that is based on the improvisation

process that musicians often demonstrate in performances

[1],[2]. In the HSA each musician plays a note in an effort to

find the best harmony with his/her fellow musicians. In the

context of Computer Science, this improvisation process

corresponds to a decision variable (musician) generating a

value in order to find a best global optimum solution (a

pleasing harmony). The HSA involves three possible

choices; repeating a tune or pattern exactly from memory,

repeating a tune or pattern with slight variation of one or two

variables (adjusting the pitch slightly), or using new random

values or notes. Geem [1],[2] formalized these processes as

harmony memory, pitch adjusting, and randomization.

Recently the HSA has been applied to neural networks. This

has been done in two ways. Firstly, by modification of the

weights of the neural network by using the HSA as the

network is trained, and secondly by using the HSA as a post-

processing tool as a way to reduce the chances of selecting a

sub-optimal solution.

We propose using the HSA in a new way and on a new

generation of neural networks. Spiked Neural Networks

(SNN) [3],[4],[5] encode information according to the

temporal differences and correlations between spike trains.

This new type of neural network is not only biologically

more realistic than other neural networks; we propose that

SNN have a natural symbiosis with the HSA.

Keywords: harmony, search, spiking neural, speech,

recognition, hybrid.

1. Harmony Search Algorithm

The Harmony Search Algorithm (HSA) [1],[2] is an

algorithm inspired by the improvisation processes that a

group of musicians undertake when they perform together. In

the HSA each musician plays a note in order to find the best

harmony at a particular point in time. In the context of

Computer Science this is equivalent to a number of decision

variables (musicians) generating values (notes) in order to

find a global optimum solution (harmony).

The mechanics of producing a pleasing harmony are as

follows:

1. Memory Consideration

This involves choosing a note (or decision

variable) from memory. This is often called the

Harmony Memory Consideration Rate or HMCR.

2. Pitch Adjustment

This involves choosing a note (or decision

variable) from memory and then altering it by a

small amount (within set bounds). This is often

called the Pitch Adjustment Rate or PAR.

3. Random Selection

This involves playing a random note (or generating

a new decision variable) within set bounds. This is

often called Random Selection or RS.

The steps to perform a HSA are as follows:

Step 1)

Initialize the problem by providing an objective function.

The HSA tries to find a vector X of size n that matches this

objective function. Thus we generate k random vectors of X

where k is equal to the harmony memory size. Therefore

harmony memory (HM) can be depicted as follows:

Where is the fitness function of the vector k.

Step 2)

Generate a new vector for each component by

performing the three actions as defined above, they are:

mailto:reidd@hope.ac.uk
mailto:barretm@hope.ac.uk

1. Memory Consideration

Choosing a vector with the probability based on the

harmony considering rate (HMCR) from HM.

2. Pitch Adjustment:

With a probability based on the Pitch Adjustment Rate

(PAR) change the value of by a small amount:

for discrete variables and

for continuous variables

where is the amount between two neighbouring values and

fw is the maximum limit of change.

3. Random Selection:

With a probability based on a Random Selection (RS) rate

change to an allowable random value taken from HM.

Step 3)

Update HM. If is better than the worst vector in HM then

replace it with

Step 4)

Check the termination criteria and repeat steps 2-4 if criteria

not reached.

In this way the HSA mimics the composition rules of

musicians in order to search for the best solution to a

problem by using a fitness function. This overcomes many of

the drawbacks of a Genetic Algorithm [6],[7] in that it

considers the relationship between values in a more

sophisticated manner. That is, the Genetic Algorithm only

works if the relationship in a chromosome are carefully

considered. (Often Gray coding is used for real values). The

HSA does not suffer from this limitation as neighbouring

notes/values can be any value within the allowable range and

the values themselves say little about their relationship.

Moreover the HSA, unlike the Genetic Algorithm, has

implicitly embedded within its workings the concept of an

explicit temporal memory. These ideas linked to the

randomization functions means that the HSA is a more robust

mechanism with which to minimize the chances of a solution

suffering from divergence or settling on local minima.

2. Spiking Neural Network

Spiking neurons [3],[4],[5] are a third generation of neural

networks that use temporal data in order to code information.

This new type of neural network can be defined as follows:

Let N be a set of spiking neurons. Let P be a set of pre-

synaptic neurons such that NP , where the axon of each

Pp j makes contact with the dendrites or soma of each

neuron
Nni to form a synapse. A weight

0,nipjw

is given for a synapse, a response function

RR
ij np :, for each synapse and a threshold function

RRni :
for each neuron.

Thus, there exists a set

K

k

ksS
1

}{

 of K synapses, with each

synapse ks
forming a connection between each jp

to each

in
 i.e.

PxNsk . Each in
 receives a spike at a specific

time t from each of the pre-synaptic neurons jp
.

The synapse ks
 receiving this spike will have an inhibitory

or excitatory response (figure 1(a)). This is the Post Synaptic

Potential (PSP).

If the neuron has a threshold set to some specific value iT

then it will fire if at time t

k

n

in Ts
0 (figure 1(c)), whereas if

this value is less there is no firing (figure 1(b). When firing

does take place there follows a relative refractory period

when the possibility of firing again is diminished and also an

absolute refractory period where there is no possibility of

firing.

The PSP function usually approximates the synaptic function

by using a sharp exponential rise and slower decay in

response to each spike. In practice the following equation is a

good approximation:

)(expexp

)(1

1
)(k

n

k

n

k

n

s

k sH
ss

s

ii

k

k

Equation 1.

where
)(kSH

 is a Heaviside step function which vanishes

for 0s and has the value of 1 for 0s , kS is a

synaptic time constant and iN is a neuronal time constant.

kk S

k

S

k

k

ss
s exp1)(

Equation 2.

In practice we have found that equation 2 is an adequate

approximation. Learning can be both supervised and

unsupervised in such a network. Learning in the supervised

network is usually implemented using the SpikeProp method

[8]. This is very similar to the error-backpropagation method

by Rumelhart [9] except that the firing time of the neuron

in
is shifted by altering its refractory period(s). Thus,

learning is achieved by temporally co-coordinated firing of

related neurons.

.

 (a) Excitatory and Inhibitory

Figure 1. Spiking neuron activity

Unsupervised learning usually involves selecting a

neighbourhood around a winning neuron and altering the

firing times of its neighbours to fire in sympathy with the

winning neuron. Again, as with SpikeProp, the firing time is

shifted toward the winning neuron. Distant neurons’ firing

times are moved away from the firing time of the winning

neuron. A typical algorithm uses the physical distance to

determine how firing times should be synchronized with the

winning neuron. In SNN a number of coding schemes exist.

They can be broadly classified as follows:

rate coding
This assumes that the information is contained in the firing

rate of the neuron. Information about the stimulus is implied

by the firing rate. As the firing rate generated by a given

stimulus varies from trial to trial, neuronal responses are

usually characterised probabilistically using this coding

scheme. In this coding scheme individual spikes are less

important than the rate of spiking activity. This has the

advantage that it is a highly robust (in terms of noise) coding

scheme but has the disadvantage that it is also highly

inefficient.

temporal coding
A temporal code is when precise, or approximate, spike

timing is assumed to carry information.

A number of studies have found that the inter-spike intervals

can be detected on a millisecond time scale in the brain. This

strongly suggests that precise spike timing is a significant

element in neural coding. Temporal coding refers to temporal

precision in the response that also says something about the

stimulus. The advantage to this type of coding is that it is

efficient. Information can be carried as the length of time

between just two spikes, or even the first stimulus to spike.

A number of coding techniques exist in the

literature[10],[11], first time to spike, inter spike interval,

synchronous spiking and spike interval and phase encoding

(where repeating patterns of activations between neurons is

used as a way of encoding information) to name but a few.

However, the interplay between stimulus and encoding

dynamics makes the identification of a temporal code very

difficult. Despite this, because of their efficiency, temporal

coding techniques are by far the most popular method of

spike coding used in SNN research.

population coding
This coding technique takes into account the coordination of

activities of a number of neurons. In population coding, each

neuron has a distribution of responses over some set of

inputs, and the responses of many neurons may be combined

to determine some value. Not only is this biologically

realistic (the motor and sensor areas of the brain are well

known to use this coding method) but it also echoes back to

older neural network research involving self-organising maps

or topological feature maps.

iT

(b) Non-Firing

(c) Firing

Refractory
Periods

iT

rel.
abs.

spike

Excitatory

delay

Inhibitory

3. HSA-SNN Hybids

It is suggested that the three basic processes in the HSA

described earlier by Geem are natural candidates for a

mechanism to correlate, classify and control (at least) two

aspects of SNNs; that is, the spike trains and the patterns of

activation of the synapses themselves. Moreover the HSA

functions can be integrated into the normal working of a

neuron, or groups of neurons, within a SNN with only slight

modification to the neuron’s traditional functionality.

harmony spike train tuning
As previously suggested, we propose that neurons in a SNN

not only perform a simple leaky integrate and fire function

(LIF), but also can naturally utilize the three basic processes

used in the HSA. This can be done by classifying spike trains

using the HSA and by regulation of those spike trains by the

HSA.

In this sense pitch adjustment could correspond to

modification of the relative, or absolute, refractory period of

the neuron, thus the allowable rate of frequency of spikes

would directly correspond to pitch. This is functionally the

same as rate encoding and temporal encoding as discussed

earlier. This similarity also extends to randomization in the

HSA hybrid which would simply be the inclusion or

exclusion of spikes. Randomization, as with the traditional

HSA, would ensure that a wide variety of alternatives are

explored within the neural solution space. Most importantly,

the incorporation of harmony memory into the spiking

neuron allows the neuron to recognize/remember previous

combinations of spike trains (either temporally or by their

rate). This can be done in two ways; firstly, by the

simultaneous control of neuronal connections. To this end a

new Multi-Spiking Neural Network model could be used

[12]. In this model information from one neuron is

transmitted to the next in the form of multiple spikes via

multiple synapses (a rate encoding method; SpikeProp

learning using HSA). Secondly, a more sophisticated model

than LIF for the neuron itself could be used. Gestner

describes the Cumulative Spike Response Model [13]. In this

model refractoriness and adaptation were affected by the

combined effects of the spike action potentials of several

previous spikes, rather than, as with LIF, only the most

recent spike. Similarly, Gerstner also describes how noise

(randomness) can be included into the Spike Response Model

by replacing the strict threshold criterion by a stochastic

process [14]. Such non LIF based models of the neuron can

easily incorporate harmony memory processes by allowing

some preprocessing in the neuron; in other words by using

the HSA to process the combined activation of a number of

spikes received in a neuron before making a decision about

how that neuron should react (what should its threshold be

set to, what should its refractory period be etc). In other

words the neuron learns how to behave when given a

particular set of spike combinations by using the HSA to

attune itself to that circumstance. For example in Figure 2

below the repeated pattern labeled a in the incoming spike

train may cause a change in the values depicted by any of the

arrows in the PSP.

Figure 2. PSP Influenced HSA

harmony active synapse tuning
At a courser grained level, the HSA can, as with spike trains

described above, be used to classify the synaptic activity and

also be used to regulate the synaptic activity within a system.

Gütig used this idea in the ―temptron‖ [15] that has its

theoretical roots in population encoding as described earlier.

Gütig describes a biologically plausible synaptic learning

rule that enabled neurons to learn specific decision rules even

when information was deeply embedded into the spike

patterns. This work underlined how a system could be built

that had a high capacity to decode information embedded in

the distributed patterns of spike synchronicity. It is

suggested in this paper that not only is rate coding and

synchronicity characteristics that are well catered for by the

HSA (in fact these are fundamental characteristics of the

functioning of the HSA) but also that other spatiotemporal

synaptic activity, such as inter spike interval and phase

encoding, as well as population encoding, are also very well

served by the HSA.

For the purposes of this paper we focus on Harmony Active

Synapse Tuning using the population encoding method

(although the other methods suggested in this paper are

equally valid potential areas of research).

iT

a a a a

4. Implementation

A hybrid HSA-SNN was built for this paper that uses

Harmony Active Synaptic Tuning. This uses a ―mesh‖ of

connected spiking neurons that are connected to their local

neighbours and also connected to input neurons that delimit

the cochlear input frequencies. This is shown in Figure 3.

Figure 3. Neural Influenced HSA

In Figure 3 the input ―cochlear‖ (in this case only

corresponding to 4 frequency ranges) fire at different times,

each time transmitting a spike to the neural ―mesh‖. The

―mesh‖ synapses compete for activation by suppressing

neighbouring neurons activation and heightening their own

sensitivity to the specific patterns of activation form the input

―cochlear‖. Both the synapses connected to the input

cochlear neurons and the neural activation of the ―mesh‖

neurons are subject to, and influenced by, the HSA. In this

way the input synapses, and by implication the synapses

connected to each neurons neighbours, are tuned by both

spike activation and by HSA mediation.

We used this architecture in order to classify simple

instructions to control a computer game/robot functioning in

a classroom environment. In this system we used a SNN to

respond to different frequencies in order to pre-process the

speech signal in a similar fashion to the cochlea. The HSA

uses the firing rates of the discrete neurons in order to

recognize the spoken words. This was done to allow the SNN

and the HSA to function together in order to provide both an

effective noise filter whilst simultaneously providing a robust

recognition system.

The system described was written in the Processing language

and as a preliminary test was used to classify different

patterns of on a 8 bit ―cochlear‖ (corresponding to 8

frequency ranges). A simple 8x8 mesh of neurons was used

to classify patterns emanating from the input cochlear. As a

initial experiment, primarily in order to test the basic code

functionality, the words used where the simple utterances

―up‖, ―down‖, ―left‖, ―right‖, ‖stop‖ and ―fire‖. These where

recorded as different combinations of bit patterns on the 8 bit

input ―cochlear‖ where each bit position represented a

specific frequency. These patterns where then classified by

competitive activation of the neural mesh and by feedback

from the HSA.

In the system the HSA was used for two basic functions.

1. To filter, separate and ―pre‖-classify the input spike

trains, making it easier for the subsequent

competitive SNN to recognise the result

2. To use the HSA to classify the activation of firing

of the synapses in the neural mesh itself.

The screenshot in Figure 4 shows the system in action. Here

the word ―up‖ has been classified in the mesh by using a

competitive SNN using HSA tuning. In this particular

example the HSA has filtered the spike trains by classifying

the activity of each input bit frequency during the training of

the system (up was entered 10 times). As result of this the

neuron 21 and 26 are maximally activated. It is these

combinations of neuron activations that are subsequently

used in the HSA in order to perform the final classification

(in this experiment this training was also performed

continuously).

Figure 3. The HSA-SNN System

This very simple prototype serves two purposes. Firstly, in

testing and exploring the symbiosis of the two technologies

(HSA and SNN); secondly, in showing that this application

area suited this symbiosis. On both counts the engine has

indicated that both of these criteria have been met. Similarly

experimentation with the engine has suggested that the model

could fairly easily be extended and applied to other

application areas.

Neural

Mesh

HSA Tuning

Separate

Classify Feedback

Time

Input

5. Conclusion

The paper has demonstrated that not only is a HSA SNN

hybrid a feasible symbiosis of technologies but that it is a

natural one. Both technologies can be combined in an

effective manner to create a potentially powerful

classification engine. This is principally because both

technologies use at their core the temporal nature of the data

as a significant part of their functionality. While the

implementation provided for this paper was a ―proof of

concept‖ it is envisaged that these ideas could be easily

extended. This could be done in two ways; firstly by

extending the model presented here. This could be done

altering the parameters of the engine, for example altering the

number and behavior of the SNN or the characteristics of the

HSA; and secondly, by parallelizing the engine. At the

moment we are particularly interested in implementing the

model on a XMOS system in XC. Similarly we hope to

implement the model in an FPGA using a Virtex 6 board in

HandleC and investigate running the model on GPU using

OpenCL.

The example used in this paper is very small scale. It is a

very simple speech recognition task. However, the engine

itself can be applied to a number of other types of

application. At present we are examining extending this

engine for a novel vision system, for use in self organizing

robots and for novel data mining and business intelligence

applications. In short, now we have seen that the simple

prototype engine confirmed that symbiosis between the

technologies is a potentially profitable one we are currently

extending the engine into different application areas.

However, for the present time we are currently translating the

Processing code into XC code for parallelization on XMOS

chips in order to build a more sophisticated speech

recognition engine.

6. References

[1] Geem, Z. W., Kim, J. H.,Loganathan, G. V., A New

Heuristic Optimization Algorithm: Harmony Search,

Simulation, 2001.

[2] Geem, Z. W., Improved Harmony Search from Ensemble

of Music Players, Lecture Notes in Artificial Intelligence,

2006.

[3] Maass, W., Networks of Spiking Neurons: The Third

Generation of Neural Network Models, Neural Networks,

Volume 10, Issue 9, Elsevier Publishing, Pages 1659-1671,

December 1997.

[4] Maass, W., Bishop, C. M., Pulsed Neural Networks, MIT

press, ISBN 0-262-13350-4, 1998.

[5] W. Mass, On the computational complexity of networks

of spiking neurons, Advances in Neural Information

Processing Systems, 7, 1995, pp. 183-190.

[6] Mahdavi M., Fesanghary M, Damangir E., An Improved

Harmony Search Algroithm for Solving Optimization

Problems, Applied Mathematics and Computation 128,

(2007) 1567-1579.

[7] Lee K, S., Geem Z., W., A new meta-heuristic algorithm

for continues engineering optimization: harmony search

theory and practice, Comput. Meth. Appl. Mech. Eng. 194

(2004) 3902–3933.

[8] Bohte S., M., Kok J., N., Poutre H., L.., Error-

backpropagation in temporally encoded networks of spiking

neurons, Neurocomputing (48), 2002, pp. 17–37.

[9] Rumelhart D., E., Hinton G., E., Williams J., E., Learning

representations by back-propagation errors, Nature 323,

1986, pp. 533-536.

[10] Theunissen F, Miller JP. Temporal Encoding in Nervous

Systems: A Rigorous Definition. Journal of Computational

Neuroscience, 2, 149—162; 1995.

[11] Rieke F, Warland D, de Ruyter van Steveninck R,

Bialek W. Spikes: Exploring the Neural Code. Cambridge,

Massachusetts: The MIT Press; 1999.

[12] Ghosh-Dastidar S., Adeli H., A New Supervised

Learning Algorithm for Multiple Spiking Neural Networks

with Application in Epilepsy and Seizure Detection, Neural

Networks Volume 22, Issue 10, Elsevier Publishing, Pages

1419-1431, 2009.

[13] Gerstner W., Van Hemmen J.L., Cowan JD, What

matters in neuronal locking, Neural Computation, Volume 8,

Pages 1653-1676, 1996.

[14] Gerstner W., Kistler W.M., Spiking Neuron Models -

Single Neurons, Populations, Plasticity, Cambridge

University Press, ISBN 0-521-89079-9, 2002.

[15] Gütig R., Somplinsky H., The Tempron: A Neuron that

Learns Spike Timing-Based Decisions, Nature Neuroscience

9, Nature Publishing Group, 2006.

