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ABSTRACT  

The objective of this study is to investigate the effect of 
memory in a transcription system for polyphonic piano music. 
The target of our work dealt with the problem of extracting 
musical content or a symbolic representation of musical notes, 
commonly called musical score. We focuses on temporal 
musical structures, note events and their main characteristics: 
the attack instant and the pitch and we compare the results 
obtained with four different feature vectors used in 
classification. In particular, we propose feature vectors based on 
one-event memory, two-events memory and three-events 
memory for classification. Moreover, we propose a supervised 
classification method that infers the correct note labels based 
only on training with labeled examples. The input to this system 
consists in piano music recordings stored in WAV files, while 
the pitch of all the notes in the corresponding score forms the 
output. The proposed system performs polyphonic transcription 
via a Support Vector Machine (SVM) classifiers, trained 
starting from spectral features obtained by means of the well-
known Constant-Q Transform (CQT). Additionally, to ascertain 
the effect of the memory, we evaluated the accuracy of the 
corresponding memoryless system. Finally, to validate our 
method, we present a collection of experiments using a wide 
number of musical pieces of heterogeneous styles, involving 
recordings of polyphonic piano. 

Keywords: Piano music transcription, Memory, Constant-Q 
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1. INTRODUCTION  
Music transcription consists in transforming the musical content 
of audio data into a symbolic representation and it can be 
considered as one of the most demanding activities performed 
by our brain: not so many people are able to easily transcribe a 
musical score starting from audio listening, since the success of 
this operation depends on musical abilities, as well as on the 
knowledge of the mechanisms of sounds production, of musical 
theory and styles, and finally on musical experience and 
practice to listening. 
The target of our work deals with the problem of extracting 
musical content or a symbolic representation of musical notes, 
commonly called musical score, from audio data of polyphonic 
music of piano.  
We must discern two cases in which the behaviour of the 
automatic transcription systems is different: monophonic music, 
where notes are played one-by-one and polyphonic music, 
where two or several notes can be played simultaneously.  
Currently, automatic transcription of monophonic music is 
treated in time domain by means of zero-crossing or auto-
correlation techniques and in frequency domain by means of 
Discrete Fourier Transform (DFT) or cepstrum. With these 
techniques, an excellent accuracy level has been achieved [1, 2].  

Attempts in automatic transcription of polyphonic music have 
been much less successful; actually, the harmonic components 
of notes that simultaneously occur in polyphonic music 
significantly obfuscate automated transcription.  
The first algorithms were developed by Moorer [3] Piszczalski e 
Galler [4]. Moorer (1975) used comb filters and autocorrelation 
in order to perform transcription of very restricted duets.  
The most important works in this research field is the Ryynanen 
and Klapuri transcription system [5] and the Sonic project [6] 
developed by Marolt. 
The solution proposed in this paper consists of a supervised 
classification algorithm to identify the note pitch. The 
supervised classification infers the correct note labels based 
only on training with tagged examples.  
Polyphonic note transcription is obtained via a bank of Support 
Vector Machine (SVM) classifiers previously trained using, as 
spectral features, the result of Constant-Q Transform (CQT).  
We introduce feature vectors based on one-event memory, two-
events memory and three-events memory for classification.  
The paper is organized as follows: in the following section the 
spectral features will be formulated; Section 3 will be devoted 
to the description of the classification method; in Section 4, we 
will present the results of a series of experiments involving 
polyphonic piano music. Some comments conclude the paper. 

2. THE CONSTANT-Q TRANSFORM AND THE 
SPECTRAL FEATURES 
The Constant-Q Transform (CQT) [7] is similar to the Discrete 
Fourier Transform (DFT) with a main difference: it has a 
logarithmic frequency scale, since a variable width window is 
used. It suits better for musical notes, which are based on a 
logarithmic scale.  
The logarithmic frequency scale provides a constant frequency-
to-resolution ratio for every bin 
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where b is the number of bins per octave and k the frequency 
bin. If b = 12, then k is equal to the MIDI note number (as in the 
equal-tempered 12-tone-per-octave scale). An efficient version 
of the CQT, based on the FFT and on some tricks, is presented 
in [8]. 
All the audio files that we used have a sampling rate of 8 kHz. 
The spectral resolution is b = 372, that means 31 CQT-bins per 
note, starting from note C0 (~ 32 Hz) up to note B6 (~ 3951 
Hz). We obtain a spectral vector A composed by 2604 = 31 
(CQT-bins) × 84 (musical notes).  
To reduce the size of the spectral vector, we operate a simple 
amplitude spectrum summation among the CQT-bin relative to 
the fundamental frequency of the considered musical note, the 
previous 15 CQT-bins and the subsequent 15 CQT-bins; then, 



we obtain a spectral vector B composed by 84 = 1 (CQT-bins) × 
84 (musical notes).  
This can be formulated as follows 
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Figure 1 shows the complete process of the spectral vector 
reduction.  
Figure 2 shows the differences between three spectral vectors 
computed with b = 372 (2a), b = 84 (2b) and b = 372 with 
vector reduction (2c).  
 
 

 
Figure 1. Reduction of the spectral vector. 

 
 

 
Using (2) allows to obtain a greater accuracy in high frequency 
with the same vector length, as can be seen in Figures 2b and 
2c.  
The processing phase starts in correspondence to a note onset. 
Notice that two or more notes belong to the same onset if they 
are played within 32 ms. Firstly, the attack time of the note is 
discarded (in case of the piano, the longest attack time is equal 
to about 32 ms). Then, after Hanning windowing, a single CQT 
of the following 64ms is computed. Figure 3 shows the 
complete process. 
 
 

 
Figure 2.  Spectral vectors of a polyphonic combination of note C3, G3 
and B3 with b = 372 (a), b = 84 (b) and b = 372 with reduction (2) (c). 
 

 
Figure 3. Feature extraction process 

 
 
 
 
 
In our work, we take into account the following assumption: 
melodic and harmonic musical structures depend on the method 
adopted by the composer; this means that every musical note is 
highly correlated to the previous note in the composition.  
Consequently, to improve classification results, firstly we 
consider what happens before the onset at time n, in particular, 
we introduce one-event memory, two-events memory and three-
events memory, this means that we consider what happens at 
onset time n-1, n-2 and n-3, respectively.  
Figure 4 shows the spectral feature extraction, regarding one-
event memory. The output of the processing phase, including all 
the note onsets, is a matrix of 168 = 84 × 2 columns, 
corresponding to the CQT-bins, and a number of rows that is 
equal to the total number of note onsets in the Wave file.  
Feature vectors are based on linear scales of amplitude spectrum 
values rescaled into a range from 0 to 1. 

 

 

Figure 4. One-event memory. 

 

 

 



 

 

 

 

Figure 5.  Schematic view of the complete automatic transcription process. 

 

 

 

3. MULTI-CLASS SVM CLASSIFICATION  
A SVM identifies the optimal separating hyperplane (OSH) that 
maximizes the margin of separation between linearly separable 
points of two classes.  
The data points which lie closest to the OSH are called support 
vectors. It can be shown that the solution with maximum margin 
corresponds to the best generalization ability [9].  
Linearly non-separable data points in input space can be 
mapped into a higher dimensional (possibly infinite 
dimensional) feature space through a nonlinear mapping 
function, so that the images of data points become almost 
linearly separable.  
The discriminant function of a SVM has the following 
expression 
 
 

 f (x) = ! i yiK(xi,x)
i
! + b         (3)

 
where xi is a support vector, K(xi, x) is the kernel function 
representing  the inner product between xi and x in feature 

space, coefficients αi and b are obtained by solving a quadratic 
optimization problem in dual form [9].  
Usually, a soft-margin formulation is adopted where a certain 
amount of noise is tolerated in the training data.  
To this end, a user-defined constant C > 0 is introduced which 
controls the trade-off between the maximization of the margin 
and the minimization of classification errors on the training set 
[9].  
The SVMs were implemented using the software SVMlight, 
developed by Joachims [10].  
A radial basis function (RBF) kernel were used 
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Linear SVMs need a regularization parameter C to be 
determined, while using the RBF kernel we need two 
parameters, C and γ. To this end we looked for the best 



parameter values in a specific range using a grid-search on a 
validation set. More details will be given in Section 4.  
For multiclass classification, the one-versus-all (OVA) 
approach has been adopted. The OVA method exploits L 
SVMs, L being the number of classes.  
The ith SVM is trained using all the samples in the ith class with 
a positive class label and all the remaining samples with a 
negative class label.  
Our transcription system uses 84 OVA SVM note classifiers 
whose input is represented by a 168-element feature vector, as 
described in Section 2.  
The presence of a note in a given audio event is detected when 
the discriminant function of the corresponding SVM classifier is 
positive. Figure 5 shows a schematic view of the complete 
automatic transcription process. 
 
 
4. AUDIO DATASET AND EXPERIMENTAL RESULTS 

In this section, we report the simulation results of our 
transcription system.  
The MIDI data used in the experiments were collected from the 
Classical Piano MIDI Page, http://www.piano-midi.de. A list of 
used pieces can be found in [11] (p. 8, Table 5).  
The 124 pieces dataset was randomly split into 87 training, 24 
testing, and 13 validation pieces.  
The first minute from each song in the dataset was selected for 
experiments, which provided us with a total of 87 minutes of 
training audio, 24 minutes of testing audio, and 13 minutes of 
audio for parameter tuning (validation set).  
This amounted to 22680, 6142, and 3406 note onsets in the 
training, testing, and validation sets, respectively.  
The results are summarized by the accuracy metric proposed by 
Dixon [12] which is given by 
 

Accuracy = TP
TP + FP + FN

 (5)
 

 

In the above formulas TP is the number of correct detections, 
FP is the number of false positives and FN is the number of 
false negatives.  
We trained the SVMs on the 87 pieces of the training set, using 
linear scale and we tested the system on the 24 pieces of the test 
set.  
Moreover, to ascertain the effect of memory, we evaluated the 
accuracy of the corresponding memoryless system, using the 84 
CQT-bins feature vector, as described in Section 2.  
The accuracy results are outlined in Table I. 
 
 
 

Table I 

 Three-event 
Memory 

Two-event 
Memory 

One-event 
Memory Memoryless 

Acc (%) 88.1 87.3 85.7 74.8 

 

 

5.  CONCLUSIONS 
In this paper, we have discussed a polyphonic piano 
transcription system based on the characterization of note 
events.  
We focused our attention on temporal musical structure to 
detect notes. In particular, we considered one-event memory, 
two-events memory and three-events memory for classification.  
Different systems have been compared, based on feature vectors 
of 84 CQT-bins (memoryless) and 168 CQT-bins (with 
memory), with RBF kernel and linear amplitude spectrum scale.  
It has been shown that the proposed spectral reduction is helpful 
to lower computational cost without decreasing accuracy in the 
transcription system.  
A wide number of musical pieces of heterogeneous styles were 
used to validate and test our transcription system.  
A comparison of results shows the higher performance of the 
memory based system with respect to the memoryless 
approaches. 
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