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ABSTRACT

The importance of real-time capable mobile biosensors in-
creases in face of rising numbers of global virus epidemics.
Such biosensors can be used for on-site diagnosis, e.g. at
airports, to prevent further spread of virus-transmitted dis-
eases, by answering the question whether or not a sam-
ple contains a certain virus. In-depth laboratory analysis
might furthermore demand for measurements of the con-
centration of virus particles in a sample. The novel PA-
MONO sensor technique allows for accomplishing both
tasks. One of its basic prerequisites is an efficient anal-
ysis of the biosensor image data by means of digital image
processing and classification. In this study, we present a
high performance approach to this analysis: The diagnosis
whether a virus occurs in the sample can be carried out in
real-time with high accuracy. An estimate of the concen-
tration can be obtained in real-time as well, if that concen-
tration is not too high.

The contribution of this work is an optimization of our pro-
cessing pipeline used for PAMONO sensor data analysis.
The following objectives are optimized: detection-quality,
speed and consumption of resources (e.g. energy, mem-
ory). Thus our approach respects the constraints imposed
by medical applicability, as well as the constraints on re-
source consumption arising in embedded systems. The
parameters to be optimized are descriptive (virus appear-
ance parameters) and hardware-related (design space ex-
ploration).
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1 INTRODUCTION

Advances in optical microscopy enable detection of
viruses which can then be used for a rapid and distributed
epidemic infection control. A novel technique which can
achieve the latter is called PAMONO (Plasmon assisted
Microscopy of Nano-Size Objects) [8, 10]. It provides the
possibility to selectively detect different type of nanoob-
jects, especially viruses, in case the particles could be im-
mobilized on the sensor surface. Virus types could be
distinguished by applying different antigenes or antibod-
ies to the gold layer. PAMONO not only enables an on-
site detection of a small amount of viruses but also a de-
tection in real-time which means that the result of a de-
tection in progress can be visualized online while insert-
ing the specimen. The PAMONO sensor unit produces a
videostream, which is 1000× 500 pixels in size and has
a framerate of 30 frames per second. On-site application
of mobile biosensors demands to take resource constraints
into account, as sensor data analysis has to be carried out
in embedded systems. On the other hand real-time anal-
ysis demands for high processing power. Thus a GPGPU
(General Purpose computing on Graphics Processing Unit)
approach was taken.

Despite an enormous amount of GPGPU application pa-
pers, in particular, related work in the context of design
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Figure 1: Intensity over time for different pixel positions

space exploration is important. Especially in the design
process in the field of embedded systems a design space
exploration can be done at design time to get an optimal
system configuration. In this domain, many different ap-
proaches [1, 3, 6, 9] exist which provide the capability to
automatically explore a design space with objectives such
as energy, performance and heat dissipation. The design
space exploration in this work takes the detection quality,
performance and energy into account.

This work is structured as follows: Section 2 describes
a parameterized processing pipeline for the detection of
viruses in PAMONO sensor data, followed by a genetic
optimization of the descriptive parameters for virus adhe-
sions. Section 3 presents design-time optimization of the
consumption of resources by performing a design-space
exploration. Finally, sections 4 and 5 provide results and
discussion.

2 GPGPU-based Analysis of PAMONO Sensor Data

Our approach is divided into two basic steps. First, the
detection of the viruses and second, the optimization of
the parameters for an effective detection.

Detection of the Viruses

The detection of the viruses is accomplished by analyzing
the video-stream produced by the PAMONO sensor using
a graphics processing device. For maximizing the detec-
tion quality of the analysis we use a generic approach. The
detection process is summarized as follows. First the input
data is preprocessed by removing the constant background
image and applying a Haar-wavelet noise reduction. The
noise reduction process is done in a high parallel manner.
For input images of sizeM × N pixels the filtering is done
in M ·N independent threads with 4M ·N global read/write
accesses for each frame.

In the second step, each per pixel time series is matched
to a variable pattern, resulting in a pre-classification of all

Figure 2: The scaled input time series (blue) is matched to
a pattern (red). The pattern is represented by the descrip-
tive parametersa, b andc.

pixels in space as virus candidates. Every virus adhesion
to the PAMONO sensor produces a small (< 6%) ascend-
ing slope of the intensity in the video-stream at the corre-
sponding pixels. Before and after the adhesion the inten-
sity remains constant. To identify these pixels we use pat-
tern matching. Figure 1 shows some selected time series
of virus adhesions.

The pattern (figure 2) is represented by the descriptive pa-
rametersa, b andc. The pattern is−1 for the firsta values,
followed by a linear ascent for the nextb− a values and a
value of 1 for the lastc − b. The matching of the pattern
to the time series is achieved by scaling the time series to
the range of the pattern and then calculating the sum of
squared differences (SSD) between these two. If the SSD
is below a threshold, the pixel is classified as a virus candi-
date pixel. The scaled time series is for all types of viruses
the same and could be encountered with one pattern. Dif-
ferent types affect the intensity change to some degree, but
not the slope of the ascent. The slope can be influenced by
how the sensor is functionalized, which could also change
the absolute intensity of the ascent.

Each thread on the GPU matches one of theM × N time
series (compare with figure 1).

In the last step the single pixels are combined to polygonal
segments, by tracing the borders of the detected pixel ar-
eas. The polygons are tracked over time to combine associ-
ated polygons. The remaining polygons are then classified
as viruses/non-viruses, based on their form factors [4].

All steps, except the tracing of the polygons, are done in
time space. Each pixel position is independent from oth-
ers. This allows the processing of exact one pixel position
by each lightweight thread on the GPU without synchro-
nization, which takes the full advantage of the GPU.

The scaling behavior of the algorithms in the steps can be
evaluated by increasing the number of cores until the fur-



Figure 3: Fitness function withx as the true positive detec-
tions,y the sum of false positive and false negative detec-
tions andz the resulting fitness value.

ther increase does not lead to a speedup of the pipeline.
Especially, in case that a GPGPU application is memory
bounded, meaning that it needs a numerous number of
main memory transfers, an increasing number of process-
ing cores will not increase the performance when reach-
ing a certain threshold. Furthermore, the performance will
not scale with the number of cores if there are too many
data dependencies inside the kernels making synchroniza-
tion necessary. A detail analysis can be found in [7].

Parameter Optimization

Since the optimal values for the parameters of the pattern
matching –a, b, c and the threshold – are unknown, an
optimization with a genetic algorithm is employed. For an
introduction to genetic algorithms see [5]. The chromo-
some, which is used by the genetic algorithm to generate
a population, is built of four genes. Each gene represents
one parameter of the optimization. The genes one to three
define the size and shape of the pattern and are given bya,
b andc as used for defining the pattern. The fourth gene
defines a threshold for the SSD between the observed time
series and the pattern.

To determine the fitness of a given population, the detected
particles are compared to manually annotated data. The
true positives (tp), false positives (fp) and false negatives
(fn) are computed by automatically matching the detected
polygons with manual segmented data. With these values

the accuracy, defined as
tp+tn

tp+fn+fp+tn [2], is given and se-

lected for the fitness function. As illustrated in figure 3,
the fitness function returns a larger value if the true posi-
tives outweigh the false classified. The true negatives (tn)
are set to zero, because they are not properly defined in

Datasets Precision Recall Accuracy

280 nm 95 % 90 % 86 %
200 nm 87 % 91 % 80 %
VLPs 80 % 86 % 71 %

Table 1: Detection results of different datasets, based on
true positives, false positives and false negatives.

this context. A population size of 80 is chosen, the starting
population is created with random chromosomes and the
fittest individual of each population is propagated to the
next generation. If the fitness function reaches the desired
accuracy or a specified number of generations is attained,
the genetic algorithm returns the best obtained parameters
for the pattern matching.

3 DESIGN SPACE EXPLORATION

The process of designing a GPGPU-accelerated device like
the data analysis system presented, involves a design space
exploration (DSE). DSE optimizes the hardware-related
parameters of the system with respect to resource restric-
tions. Especially the objectivesrun timeandenergy con-
sumptionare of concern here. The first objective is impor-
tant in order to realize a system which is capable of visu-
alizing results of the virus detection in real-time while the
latter is crucial for mobile devices. The parameters which
are evaluated are e.g. the number of required processing
units, the amount of memory used and the mapping on the
processing cores.

4 RESULTS

The results to be presented in this section comprise the op-
timization of the detection rate and the design space explo-
ration for different numbers of parallel processing cores.

The experiment set-up was made with a QPhotonics su-
perluminiscent diode QSDM-680-9 and a Kappa DX40-
1020FW camera which recorded the images. Different
sizes and types of particles are used, amounting to datasets
with 280 nm- and 200 nm-sized synthetic particles and
virus like particles (VLPs).

The genetic algorithm took about four hours for each
dataset with about 22.000 single runs of the pipeline. Due
to the parallel GPGPU approach, and caching of the input
images, the resulting frame rate exceeds 220 frames per
second on a GeForce GTX 480. If the images could be pro-
vided faster, the possible throughput of the GPU pipeline
is about 2.000 frames per second (images 512× 50 pixels,
scaling to bigger images is linear).

The results for the improvement of the detection quality
are shown in table 1, quantifying precision, recall and ac-
curacy, where the latter serves as the fitness function. The
detection quality depends on the particle size.
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Figure 4: Power Consumption over Application Runtime
with Different Processing Cores Number

Three different graphics cards where used for the design
space exploration: ION (16 Cores), 9600GT (64 Cores)
and 250GTS (128 Cores). As can been seen from figure 4,
the runtimes of the image processing and analysis are im-
proving with the number of cores but with a lower factor
when scaling from 64 to 128 cores. This indicates that one
bottleneck for the speedup is the memory and the second
bottleneck is the data dependency of the application. On
the other hand, the energy consumption – integral of the
power consumption curve over time –, is not improving
anymore when switching from 9600GT to 250GTS.

5 DISCUSSION

A method to optimize the descriptive and hardware-related
parameters of our processing pipeline for PAMONO sen-
sor data was presented. An automated detection of viruses
in such data can be carried out in real-time, using GPGPU
computing. The detection can be used to distinguish dif-
ferent types of viruses by applying different coatings to the
gold layer. Despite the early stage of development, the de-
tection results are promising in terms of accuracy.

Future research in the analysis of PAMONO sensor data
aims at an enhancement of the presented processing
pipeline, followed by a multi-objective optimization using
machine learning techniques. This enables decomposition
of the objective of accuracy into precision and recall, as
well as a simultaneous optimization of the objectives speed
and consumption of resources. Suitable features beyond
time series are to be identified that take into account not
only the temporal but also the two spatial dimensions of
PAMONO data.

Beyond the descriptive and hardware-related parameters
covered in this work, an extended pipeline gives rise to
a third class of parameters to be optimized: the compu-
tational parameters of the processing pipeline, like e.g.
choice of algorithms for preprocessing and classification,
thresholds, and the features to be computed for matching.
These computational parameters affect all objectives: de-
tection quality, speed and consumption of resources. The

next step to be taken is optimizing these computational pa-
rameters on a given platform. This encompasses learn-
ing the descriptive parameters with respect to the cho-
sen features, i.e. learning the characteristic values those
features assume for viruses. The goal of this optimiza-
tion is improving detection quality (precision and recall)
while maintaining the real-time capabilities of the current
pipeline and minimizing consumption of resources on the
given mobile platform. Achieving these goals means de-
veloping the foundation for a mobile PAMONO sensor and
analysis device.
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