
Model-driven Methodology for Real-Time Software Design
Rédha HAMOUCHE, Rémy KOCIK

Université Paris-Est, ESIEE Paris, Embedded Systems Department
Cité Descartes - BP 99 - 2, Bd Blaise Pascal - 93162 Noisy-Le-Grand Cedex, France

e-mail: {hamouchr, kocikr}@esiee.fr

ABSTRACT

This paper presents a model-driven methodology and tool
for Real-Time Embedded Control Software (RTECS) de-
sign. This methodology leads to evolve the RTECS de-
velopment process from a classical code-oriented devel-
opment to a model-driven development where the code
is generated automatically. It uses a component-based
and aspect-oriented approach. The component approach
should add significant value to the design process, help-
ing the software designer to produce modular and reusable
system model. The aspect approach represents a signifi-
cant paradigm shift from the traditional monolithic view.
It provides a better ability to model extra-functional prop-
erties of RTECS. Both approaches lead to make the RTECS
design significantly easier and improve the model accu-
racy and reduce the design time and cost. A tool called
MoDEST implements this methodology and provides au-
tomated model transformations and real-time code genera-
tion. It should help designers to analyse system models.

Keywords: Model-based design, software component,
aspect-oriented programming, metamodeling, embedded
system design, embedded control software.

1 INTRODUCTION

Real-time embedded control systems are ubiquitous nowa-
days. They are used in a broad spectrum of applications,
from simple temperature control in household appliances
to complex and safetycritical automotive brake systems or
aircraft flight control systems. The design of real-time em-
bedded control systems tends to be more and more difficult
due to the strong constraints (cost, price, energy consump-
tion, control performance,...) and the growing complex-
ity of the used software and hardware components. The
software deals with different application domains (video
processing, signal processing, telecom, ...), implemented
onto heterogeneous distributed architectures composed of
processors (DSP, RISC) and specific integrated circuits
(ASIC, FPGA).

As shown in figure 1, designing RTECS follows usu-
ally a V-process, which allows building a system step by
step according to top-down and then bottom-up design
flow. A typical V-process for real-time embedded con-
trol systems design can be decomposed into three major
steps [5]: functional control modeling and analysis, spec-

Figure 1. The design process using MoDEST

ification of control software and real-time implementation
of control software. The result of each step is a model
which is refined in the next one, until the implementation
step. The functional system modeling and analysis, usu-
ally performed by control designers, is a modeling step
where the behavior of plant and controller (control law) is
described by a mathematical model, using dedicated lan-
guages and tools (like Matlab/Simulink or Scilab/Scicos),
in order to model and analyze the plant and synthesize
the control law. The specification of control SW is usu-
ally achieved by computer science engineers in order to
implement the mathematical equations resulting from the
modeling step, to capture the structure of the software, and
to specify the high-level implementation constraints (in-
put/output latency, jitter, etc.). The real-time implemen-
tation of control SW, realized by computer science engi-
neers, corresponds to writing the controller as real-time
software that will be executed on the hardware, and meets
the implementation constraints. Usually, this implementa-
tion is described as a set of tasks, functions with real-time
execution constraints (period, priority, deadline, etc.) and
properties (execution duration, memory footprint, etc.).
These tasks are scheduled in order to guarantee they meet



the specified real-time constraints.
Along the design process of RTECS, several actors be-

longing to different domains (control theory, signal pro-
cessing, real-time software, ...) are involved. They use
domain-oriented method, languages and tools. Therefore,
produced models at the different steps are heterogeneous.
They differ mainly by the specified functionality, real-time
constraints and models of computation (MoC) [6]. This
heterogeneity of models introduces lacks of consistency
in the system design and leads usually to a disconnected
design process where translations between the steps are
needed. These translations are error-prone because they
are usually performed manually by engineers. These er-
rors may appear very early in the development process and
be propagated into further steps. They can be only detected
in the validation steps. Thus, correcting these errors needs
numerous backtrackings (reiterations of V-cycle) in the de-
sign process, which lengthens the design lifecycle and time
to market. Furthermore, the inconsistency of models may
affect the implementation of the control system by disturb-
ing its stability and reducing its performance [9][1].

Nowadays, there are research challenges to define
methodology and tools which reduce the design time and
cost, and ensure the consistency of models from system
level to implementation level. Tools that allow a control
design and real-time design are quite a few. Ptolemy, Jitter-
bug [3], TrueTime [7], SynDEx [10] are examples of such
tools. Unfortunately, they are, in general, specialized on a
certain aspect of the co-design problem or impose some re-
strictions [8]. Ptolemy tool, for instance, imposes some re-
strictions by the timed-multitasking model of computation.
It only facilitates simulation of fixed priority scheduling of
tasks with constant execution times [8]. Another approach
like AADL (Architecture analysis and Design Language)
is emerged recently for a high level design and evaluation
of the architecture of embedded systems. They are power-
ful but the complexity of models can be higher. In fact,
the different real-time/embedded concerns (safety, secu-
rity, real-time constraints, scalability, etc.) are mixed in the
models. When one of the concerns of the model needs to
be modified, manipulating the parts of the model related to
that concern can prove to be challenging since these parts
are mixed with the elements from other concerns [4].

In this context, we have defined in [6][5] methodol-
ogy and tool for design real-time embedded control soft-
ware. Section 2 describes this methodology. Section 3
presents a model-driven tool, called MoDEST, and shows
the benefits of this tool via a case study. Finally, the paper
is concluded in section 4.

2 MODEL-DRIVEN EMBEDDED SYSTEM
DESIGN

As depicted in figure 1, the proposed methodology offers
a multi-facet design where the system model is viewed on
different design facets as complementary. Each facet is
well suited to the problem of each design step. It provides

domain-oriented toolset for building model, using specific
terminology (control, computer science or real time), by
the corresponded actor (control designer or real time soft-
ware designer). This design approach leads to unify the
design steps into a homogeneous approach, with handling
the complexity and the heterogeneity of models. It al-
lows to link the functional system modelling step with the
real-time implementation step, and it then provides an ef-
ficient real-time implementation of models with the con-
trol performance in mind. This is in order to evaluate the
system performance and stability during their design. We
aim to define real-time scheduling policies taking better ac-
count of control models constraints (sampling periods, in-
put/output latencies, jitters. . . ). On the other hand, we seek
to take into account the temporal characteristics of the im-
plementation in the hybrid simulation. The consistency be-
tween the design steps is ensured using the a model-driven
development (MDD) [2] approach.

MDD approach
The main goal of the methodology is to evolve the RTECS
development process from a classical code-oriented devel-
opment to a model-driven development where the code
is generated automatically. The automatic transforma-
tion of models improves their consistency and traceabil-
ity throughout the development cycle. This consistency is
achieved through the notion of metamodel. A metamodel
is a description pattern which is able to capture concepts
used in system models. The proposed metamodel is able
to capture the three facets description by defining an uni-
fied terminology and semantics to share information with-
out having to duplicate it. As depicted in figure 2, each
change in a facet description updates another one by carry-
ing out model transformations and reconciliation between
the facets, which guarantee consistency of models in the
earlier stages of design. The metamodel also allows to
build bridges with external approaches and tools, as well
as code generators to multiple targets. The proposed meta-
model is based on two paradigms: software component
and aspect-oriented programming.

Figure 2. Metamodel and Facets



Component Approach
To offer a better level of abstraction and strengthen the
construction of reusable modules, we adopt a component-
based design approach [11]. This representation of the
software architecture brings with it all the advantages of
modern thinking in software development. Designs are in-
stantiated largely by navigating and choosing pre-written
configurable components from libraries rather than by im-
plementing the design from scratch. The reusability of
models should be increased despite the fast technologi-
cal evolution of embedded platforms and the design time
should be reduced.

Figure 3. component model

As shown in figure 3 and 4, a new component model
that is lightweight and that addresses explicitly the real-
time properties of embedded systems is defined. It in-
teracts with the environment through its interface (exit
points of component interactions with its environment),
it is characterized by properties stored as reflective infor-
mation (such as worst-case execution time, jitters, mem-
ory footprint or location of its source or binary code), and
its internal behaviour described by sub-components and a
real-time automata (statechart).

Figure 4. Metamodel of a component

Aspect Approach
A RTECS is characterized by its dependence on the exe-
cution context (the environment in which the system is
operated). It reacts to the context changes (sensors, op-
erators, . . . ), and its behavior is constrained by the context
(real-time, embedded, security or energy constraints, phys-
ical constraints, . . . ). A major properties of a RTECS are
context-dependent. Real-time, embedded, security, energy
or physical constraints are an example. While designing

and modelling RTECS, we have to overcome the follow-
ing difficulties: (1) The major properties of RTECS, such
as reliability, security, schedulability and synchronization,
are global and transverse to the system and they cannot be
cleanly encapsulated in a generalized procedure. There-
fore, if the system analysis shows that the design is not
schedulable, it is necessary to re-design and go back to
models or codes to make some changes. Navigating and
applying changes to models/codes are increasingly diffi-
cult as the models/codes grow more complex; (2) As we
have to treat various kinds of context, it is difficult to model
them from one point of view; (3) By its nature, the model
for internal processing tends to depend on the model of
external context, and changing the context, causes direct
effects on internal model. This make reusability, modifi-
ability and extensibility of RTECS not efficient. On the
other hand, in the system design and analysis, the most
difficult issues are ensuring that extra-functional proper-
ties such real-time performance are being met. What is
required is a mechanism that make consistent and global
changes, and offers better modularity and ability to anal-
ysis extra-functional properties. This is one value of the
aspect paradigm.

The aspect-oriented approach addresses the separa-
tion of functional and extra-functional aspects in an ap-
plication development, in order to avoid the usual in-
terweaving between those aspects. Application is ma-
nipulated regarding specific aspects, rather than in its
whole. Therefore, modifying any functionalities or extra-
functional properties does not lead to change the whole
application description. This separation gives a new di-
mension of modularity, reusability and maintenance, and
increases configuration capacities. Unlike in monolithic
development, this approach offers a better ability to ana-
lyze extra-functional properties. In the literature, an as-
pect is defined at the programming language level. For
example, AspectJ [12] provides syntax that permits the
specification of aspects and a weaver that weaves the code
specified in the aspect into the base Java code. We ex-
tend the concept of aspects and apply them at the design
level. Our aspects are defined as an extra-functional enti-
ties which can be applied to the facets, not to source code,
in a transversal manner. An example of key aspects for em-
bedded software systems are: security aspect, energy as-
pect, platform aspect, scheduling aspect, temporal aspect,
profiling aspect,... By this way, designers are encouraged
to describe system facets in a functional manner and then
to apply extra-functional updates to the design in a global
and consistent manner.

As shown in figure 5, an aspect may crosscut an facet
of the system in order to affect behavior of the system
model, change its semantic or its performance. It crosscuts
components of a model for adding extra-functional treat-
ment and/or imposing non-functional constraints. We dis-
tinguish four ways of crosscutting : (1) to supervise and
control the behavior of components via trigger interface.
An aspect uses this interface for sending context-sensitive



Figure 5. Aspects and facets

events (urgent event, operator command, device failure or
dysfunction) and making then the statechart of components
context-sensitive without a strong coupling with the con-
text; (2) to constrain the components behavior by the con-
text requirements. Via an interface called activation inter-
faces, the designer can introduce constraints in the compo-
nent statechart as guards or invariants. Some system func-
tionalities don’t then work for example even if users try to
operate it. An aspect may also introduce communication
constraints on the interfaces of the component to impose a
communication mode (synchronous or asynchronous) or a
rate of data production/consumption; (3) to control data of
components via an interface called introspection interface.
An aspect can control access to certain data of components
for managing concurrent access, verifying the data values
for security reasons, and so on; (4) to define the resource
constraints (via resource interface) associated with the tar-
get execution platform of the system. An aspect can define
timing constraints such as period, deadline and jitter. It can
crosscut components for defining the WCET (worst-case
execution time) of component operations. This resource
information is needed at design level to evaluate the sys-
tem schedulability for specific execution platform. Change
a target execution platform consists then in replacing only
the corresponding aspect by another one specific to a new
execution platform.

Component/Aspect weaving
The model of each facet is built by an assembly of com-
ponents, and then by a weaving of those components with
a set of aspects (see figure 6). The components are inter-
connected via data interfaces and they are crosscutted with
the aspects via aspectual interfaces: trigger interface, acti-
vation interface, interface of reflective information, and re-
source interface. The weaving is described by a declarative
language which allows the declaration of weaving rules as
follows:

WR1 : IF (bool expr) THEN

Aspect.TriggerInterface->GEN(event)

WR2 :IF (bool expr) THEN

Aspect.ActivationInterface = bool value

bool expr ::= bool expr op
IS IN(Aspect.State)
bool expr ::= IS IN (Aspect.State)
op ::= and | or

Figure 6. Aspect and components weaving

bool value ::= true or false

An example of weaving rules is described in sec-
tion 3. In our methodology, those weaving rules have the
benefits to built an analysable or executable model. In fact,
weaving rules allow building global conditions, based on
the statecharts described in the different facets. This con-
stitutes global invariants which serve for validating the sys-
tem with external tools (model checking tools for exam-
ple).

3 TOOL AND CASE STUDY

MoDEST
For evaluating the proposed methodology, a new toolkit
called MoDEST (Model-Driven Embedded System design
Tool) is currently under development. It implements the
proposed methodology and offers a design environment
ranging from control algorithm modeling to code gener-
ation on a single-processor target This tool is not doing
what other domain tools done, but enabling to build links
between them in order to support in a same environment
the whole design process of embedded systems. The tool
supports the importation of control models and provides
helpful construction of embedded software specification
and its real time implementation with careful consideration
of model transformations. The MoDEST tool provides fa-
cilities for scheduling analysis and simulation as well as
the code generation for multiple targets.

Case Study
As an example we consider the software design of a DC
electrical motor speed control system, such as the control
of a robot motor. Usually, the control law of such system
is based on a well known PI algorithm. In this example,
we will see how this algorithm can be specified and imple-
mented with MoDEST.

Functional System modelling: The functional
view of the PI controller is shown in figure 7. In the first
step, the control law provided by a control engineer must
be imported in the functional view of the MoDEST tool.
The control law algorithm is here described using a graph-
ical description language. The formalism of this language
is well known to control engineers, since it is similar to
that used by the tools for design and simulation of the con-



trol laws. The development of a gateway for an automatic
import from Simulink is in progress.
The controller algorithm is here composed of 5 main func-
tional blocks. The first block called Input speed de-
fines digital sampling of the motor measured speed. The
blocks P, I, and ADD define the PI algorithm, while the
block motor cmd applies the computed voltage to the
motor. For a demonstration purpose we have added 6 more
blocks (in1, in2, control1, control2, out14,
out15) in order to introduce temporal perturbations on
the PI algorithm execution. We can see on the graph that
sampling rate of Input speed and motor cmd is de-
fined by a clock CLK1. It can also be noticed that 2 other
clocks (CLK2 and CLK3) are used to define sampling rate
on in1, in2, out14 and out15. In this example CLK1
define a 1000ms clock, CLK2 define a 800ms clock and
CLK3 is set to 500ms.

Figure 7. PI example: MoDEST functional view.

Specification of control SW: From the func-
tional description, The computer engineer specifies the
software functions which will implement the functional
blocks. This is achieved using the MoDEST specifica-
tion view. This view defines a mapping of functional
blocks into implementation components (IComp) which
will be executed at runtime. Figure 7 illustrates this map-
ping for our PI controller. Here, the input sampling block
Input speed will be implemented by an IComp named

Input speed IComp. The 3 blocks P, I and ADD will
be both implemented by only one IComp called PID.

Implementation of control SW: The third view
of MoDEST allows the user to define the real-time soft-
ware components and the runtime software context. First,
it necessary to define the tasks which will support the real-
time periodic execution of the IComps. Several IComps
can be ordered in a sequence to be executed in the same
task. The set of task can be defined manually by the
user but it can also be automatically generated by the tool
taking into account the IComp and clocks characteristics.
On the example (see figure 8), a control task has been
generated by combining the IComp of the same clock:
Input speed IComp, PID and motor cmd IComp.

In this facet, three extra-functional aspects are de-
fined in this view. The energy aspect constrains the func-
tionalities of the task: if the battery level becomes low,
the task should be in the limited control state. The secu-
rity aspect is a watchdog which resets the task if its be-
haviour diverges. The platform aspect defines the runtime
context of the task. The user should define a platform as-
pect which provides several information on the software
and hardware architecture where the application should be
executed (processor type, operating system, compiler, soft-
ware libraries,...). The execution duration of each IComp
(Input speed IComp, PID and motor cmd Icomp) depends
on these parameters. When an IComp has never been used
on the described architecture, the user must also provide
an estimation of it. This estimation should be refined with
measurements by the profiling aspect.

Analysis and Simulation
For a real-time implementation of tasks, the designer can
define a scheduling aspect in order to crosscut the tasks
with information related to a scheduling policy. At the de-
sign step, this aspect may adjust real-time properties such
as the tasks priority. At the code generation step, it al-
lows to add into the generated code of the tasks the OS
functions which are appropriate to the selected scheduling
policy. The MoDEST tool provides an automated schedu-
lability analysis for assess the schedulability of the de-
sign without implementing the system. The result of the
analysis is whether the system is feasible or not in the
worst case. This analysis provides the processor charge
and the response time to show if tasks meet their stipulated
timing constraints. The tool implements several classical
real-time scheduling algorithms such as Rate Monotonic,
Deadline Monotonic and Earliest Deadline First. To re-
duce design time, it can automatically identify a list of ap-
plicable scheduling analysis that matches the system char-
acteristics (Operating System, task dependencies). The re-
sults of scheduling are drawn graphically with chronogram
chart as depicted in figure 8. From this simulation, MoD-
EST is able to perform a temporal behavior analysis by
using temporal aspect. Latencies between inputs and out-
puts of the system, delays and jitters on tasks and IComp
executions are measured and displayed as histograms. By



Figure 8. PI example: MoDEST implementation view

this way, the control designer can evaluate the jitters and
delays induced by the real-time implementation. Taking
into account these delays and jitters, he can perform some
hybrid simulations to choose the scheduler which induces
the best control performances.

Weaving, code generation and profiling
The weaving between the aspects and the task component
is mainly described through the rules W1-W6 as follows:

WR1 : if (IS IN(unstable) then
GEN(evReset)
WR2 : if (IS IN(Stable) and
IS IN(Charged Battery) ) then
valid Context=true
WR3 : if (chosen(P1) then

wcet(Input speed Icomp) = 100ms
WR4 : if (chosen(P1) then wcet(PID) =
200ms
WR5 : if (chosen(P1) then
wcet(motor cmd Icomp) = 100ms
WR6 : if (chosen(P1) then period = 200ms

The rule WR1 specifies that the task is reset (event
evReset) if the robot becomes instable. The rule WR2 con-
strains the task to control the system only if the security
constraint and the enregy constraint are met. The rule WR2
constitutes a system invariant to check the model with an
external tool for model checking. The rules WR3, WR4,
WR5 and WR6 define the code source path of IComp (In-
put speed IComp, PID and motor cmd Icomp) within the



platform P1. As shown in figure 8, these rules constitute
directives for the weaver and the code generator.

The MoDEST tool supports currently the code gen-
eration on a single-processor target. From the implemen-
tation facet, the designer can generate code on a target
C/RTAI, real-time Java, and C on DSPBios kernel of Texas
Instruments. The figure 9 shows an example of C/RTAI
generated code concerning our case study. The PID task
is generated as periodic task scheduled with EDF policy,
and weaved with a profiling aspect. This aspect crosscuts
the task code and adds into this task the profiling functions
(hook functions named chrono) in order to measure at
runtime the execution times of its IComp.

Figure 9. PID generated code with profiling aspect

The measured times are then sending back to the sim-
ulation/analysis framework of MoDEST. Based on this col-
lected information, a real scheduling chronogram is drawn
to compare it with the theoretical scheduling chronogram.
Timing measurement could be done on this result in order
to get some relevant temporal information to send back to
control design tools.

4 CONCLUSION AND FUTURE WORKS

This research work is undertaken by collaborations be-
tween control designers and computer sciences design-
ers to clarify and distinguish the models handled in con-
trol performance design and those manipulated in real-
time implementation. Current results are a first step to-
wards a harmonization of these heterogeneous models.
The component approach should add significant value to
the design process, helping the software designer to pro-
duce modular and reusable system model. The aspect ap-

proach represents a significant paradigm shift from the tra-
ditional monolithic view. It makes the system model easy
to extend/contract system capabilities with global wide
changes being performed automatically, avoiding errors of
forgetting to change one or more locations. This leads to
make design easier, improves accuracy and reduces design
time. The tool provides a way to speed up design-code-
test-debug cycle through analysis/simulation of the system
model, and automated transformations and code genera-
tion. These features can substantially improve the develop-
ment, implementation and evaluation of embedded system
software.

This research work is in progress to be fully imple-
mented in the MoDEST tool. In the near future, we will
define and implement transformation rules to improve the
automatic transformation between the facets. These rules
will be based on the MDA approach (Model-Driven Ar-
chitecture) approach and its associated tools. Software
bridges to external tools are envisaged in order to allow
models validation in the earliest steps of the design pro-
cess.

References

[1] M. Ben Gaid, R. Kocik, Y. Sorel, and R. Hamouche. A methodology
for improving software design lifecycle in embedded control sys-
tems. In IEEE Design, Automation and Test in Europe, DATE’08,
Munich, Germany, 10-14 March 2008.

[2] J. Bézivin and O. Gerbé. Towards a precise definition of the
OMG/MDA framework. In Proceedings of the Conference on Au-
tonomous Software Engineering (ASE01), San Diego, CA, USA,
2001.

[3] A. Cervin and B. Lincoln. Jitterbug 1.1 reference manual. technical
report ISRN LUTFD2TFRT-7604-SE. Departmentof AutomaticCon-
trol, Lund Instituteof Technology, Sweden, 2003.

[4] D. De Niz and P. H. Feiler. Aspects in the industry standard aadl.
aspect-oriented software development. In Proceedings of the 10th
international workshop on Aspect-oriented modelling. Vol. 209,
Vancouver, Canada., 2007.

[5] R. Hamouche and R. Kocik. Metamodel-based methodology for
real-time embedded control system design. In Forum on specifica-
tion and Design Languages FDL’6, Darmstadt, Germany, Septem-
ber 2006.

[6] R. Hamouche, R. Kocik, and M. E. Ben Gaid. Multi-facet de-
sign methodology for real-time embedded control systems. In
IFAC Workshop on Programmable Devices and Embedded Systems,
pages 14–20, Feb 2006.

[7] D. Henriksson and A. Cervin. Truetime 1.1 reference manual. tech-
nical report ISRN LUTFD2TFRT-7605-SE. Departmentof Automat-
icControl, Lund Instituteof Technology, Sweden, 2003.

[8] D. Henriksson, O. Redell, J. El-Khoury, M.Trngren, and K.-E.
Arzn. Tools for real-time control systems co-design a survey. Tech-
nical report, Department of Automatic Control, Lund Institute of
Technology, Sweden., 2005.

[9] R. Kocik, M. Ben Gaid, and R. Hamouche. Software implementa-
tion simulation to improve control laws design. In Proceedings of
the European Congress SENSACT 2005, Paris, France, 2005.

[10] C. Lavarenne, O. Seghrouchni, Y. Sorel, and M. Sorine. The syndex
software environment for real-time distributed systems design and
implementation. In Proceedings of the European Control Confer-
ence, Grenoble, France, 1991.

[11] C. Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1999.

[12] Xerox. AspectJ site : http://www.aspectj.org, 2003.


