Wireless Electricity Monitoring System for Smart House using Smart Plug

Min Goo Lee, Yong Kuk Park, Kyung Kwon Jung, June Jae Yoo
U-Embedded Convergence Research Center, Korea Technology Institute
Seongnam-si, 463-816, Korea

ABSTRACT

We describe the smart plug with a wireless sensor network for monitoring of electrical usage in smart house. The smart plug integrates an AC power socket, a relay to switch the socket ON/OFF, a current transformer sensor to sense current of load appliance and a K mote. The Kmote is a wireless communication interface based on TinyOS. We evaluated smart plug in a laboratory, analyzed and presented energy consumption data from electrical heater for 3 months.

Keywords: Smart Plug, Smart House, Wireless Sensor Network, Energy Consumption

1. INTRODUCTION

In a world of highly developed countries and emerging economics, energy supply plays a major role. In a modern household, hardly any device runs without electricity. Understanding household energy usage in-house is vital for the planning of energy consumption and conservation. Household are an important group when addressing energy conservation. Many researchers pointed out that changing life style is important to reduce the energy consumption. The traditional electric meter, used by electricity companies for accounting is the electromechanical induction watt-hour meter. Its robust technical design is in use for over a century but is not capable of more than measuring the accumulated amount of consumed energy. A disadvantage is that either an employee, sent by the energy company or the customer himself has to read the meter manually which implies costs and administration effort [1]. Smart meter is a very general term for a more advanced metering device, which provides more detailed information on consumption to the customer and is mostly able to communicate with the electricity supplier via some network for the purpose of accounting, billing and monitoring. Capabilities range from simple display a meter, which gives a user feedback on current and past consumption, to high-tech meters which are capable of interacting with home automation systems and for instance are able to switch on a device when the supplier indicates cheap energy prices. Google PowerMeter is an on-line service that interacts with consumer’s local smart meters via vendor or utility company. Load data is sent from a smart meter to the energy supplier, who forwards data to Google’s data store by implementing and invoking the Google Data API. Google provides a uniform user interface to all customers including processed and analyzed data. This technology leads to vendor independent information processing and allows integration of multiple devices [2-3]. This paper presents the architecture, design, and evaluation of smart plug, a wireless sensor network for gathering electricity usage and controlling AC in a smart house environment.

2. SMART PLUG MONITORING SYSTEM

The overall design of the smart plug monitoring and control system is shown in Figure 1. The design we have made divides the system three parts. The three pieces of this decomposition are the smart plug, the base module, and the energy control panel.

![Figure 1. Smart plug monitoring system overview.](image)

Smart Plug

An essential component of smart plug is the device that performs the energy measurement and control. This device consists of four components – CT (current transformer) sensor, AD/DC power supply, microcontroller with radio, and relay as shown in Figure 2.

To obtain power measurements, a dedicated IC is usually used to perform the necessary analog-digital conversions. In this paper, we use the CT sensor to convert current to voltage. These devices use the Hall effect to measure current and can be either clamp-on (non-contacting) or
in-line. Inline CT sensors intercept the AC current and couple it with an internally calibrated Hall effect element. This approach is compact and precise. More importantly, the high voltage AC input is electrically isolated from the low voltage output inside the in-line CT sensor.

The sensor network module is implemented from a commercial product (Intech co., Kmote-B) which is a clone of Telosb platform, including a microcontroller (Texas Instruments co., MSP430, 8MHz), a IEEE802.15.4 compliant RF transceiver chip (Texas Instruments co., CC2420) [4-6].

Energy Control Panel

The role of the energy control panel is to store packets from the smart plug to a database as shown in Figure 3. We choose a small size embedded board for easy development of client program and convenient management of the in-house monitoring system.

The smart plug reads the packet from base module and writes it with additional information into the MySQL database. The UI program is implemented under the Linux using Qt.

The energy control panel program can be converted into a smart phone apps using RF-to-Bluetooth dongle as shown in Figure 5. The smart phone is based on android platform.

3. EXPERIMENTS

Figure 6 illustrates the experimental measurement set-up. The smart plug measures the current per 1 second, and transmits the wireless data to the energy control panel per 5 seconds. We measure the current consumption and electric power. It was based on the result of saved data in the energy control panel as shown in Figure 7.
Figure 8 are power consumption traces from electrical heater under measurement.

In Figure 9, it is showed the trend of the electricity power consumption as a function of the temperature difference. The quadratic regression curve can be estimated on the Equation (1).

\[W_{\text{Estimate}} = 0.2753x^2 - 0.5376x + 4.659 \] (1)
Estimation results have been investigated and presented in Figure 10.

4. CONCLUSIONS

In this paper we describe the home power monitoring system using smart plug which we have developed. The developed monitoring system is composed of the wireless power outlet, which named smart plug, and the energy control panel. The smart plug integrates AC power receptacle and wireless sensor node into a power socket to switch the power ON/OFF and to measure the power consumption of plugged appliances. The energy control panel stores the received signals into the database. The experiment results show the adaptability and feasibility of the energy consumption data. Future research may integrate into the end devices to allow them to be tasked with more sophisticated data processing and generation.

5. ACKNOWLEDGMENT

The project related to this paper is performed by the Ministry of Knowledge Economy and the Korea Evaluation Institute of Industrial Technology. [10035491]

6. REFERENCES