
Multi-Layer Architecture for Transition of Business-Models to common Software-Tools and

Optimization of the Model-Structure exemplified with Microsoft SharePoint 2010

Sebastian Lauck

Heinz Nixdorf Institute, University of Paderborn,

Paderborn, 33102, Germany

and

Dr. Christoph Laroque

Heinz Nixdorf Institute, University of Paderborn,

Paderborn, 33102, Germany

and

Philip Hartmann

Heinz Nixdorf Institute, University of Paderborn,

Paderborn, 33102, Germany

ABSTRACT

This paper describes a model to transfer established business

models like bml models into a new dynamic structure which is

immediately usable in standard software and portable between

different systems without complete reengineering. Many

products like Microsoft SharePoint provide toolkits for work-

flow development but these workflows are stored commonly in

a proprietary way and are not easy alterable and adoptable.

Aside from the possibility to embed complex business models

in standard software, this approach supports runtime altering of

the workflow structure in terms of optimization of the process

structure to different targets like time, cost and quality. An

exemplary extension to the basic model is given which

describes a capacity limitation in single process steps. To

respect these bounds it is necessary to embed artificial

constraints in the workflow structure.

To reach the goal of a loose coupled dynamic structure a multi-

layer architecture was developed, in which dynamically

connected objects are used to represent the formal model

structure. This approach allows a translation of process-

descriptions into requirement-definitions which can be stored in

relational database structures.

The approach was validated by developing a prototype based on

SharePoint 2010. A short description of the prototype follows

the conceptual introduction.

Keywords: Business Processes Models, Optimization, BML,

Network Planning, Process-Architecture

 INTRODUCTION 1.

Standardization of business processes keeps being an actual

topic in different types of organizations. Causes are manifold,

e.g. the implementation of management systems or the

establishment of a quality management system like ISO9001.

Business processes can be taken as time- and space- coordinated

goals of the management, while input- and output- parameters

have to be known [2,4,6].

Different types of models, describing activities and business

processes have been developed. Popular examples are the EPC

(entity process chain) and the PDM (precedence diagramming

method) described in DIN69900. EPC models are used

primarily to describe logical relations between single steps or

tasks. PDMs focus on the determination of durations for single

activities and buffer-times resulting from the relationship

between single steps [3].

Logical connections like OR and XOR aren’t defined in PDM-

models whereas EPCs lack of specific time definitions. The

solution presented on the following pages enables the developer

to describe different kinds of relationships (OR/AND/XOR) in

combination with temporal properties (END-START/END-

END/START-START/START-END) between tasks as well as

the definition of durations for each step.

Afterwards defining and modeling business processes a

common step is the implementation of these models in IT-

systems. Established workflow management systems enable this

step by providing toolkits. Mostly a static defined business

process, which can be executed and monitored, is the result of

this implementation [13].

In the end the singular definition of business processes isn’t

satisfying in each case: On the one hand the model can differ

from the actual process, on the other hand there is the

possibility that processes change over time, or have to be treated

in dependence of framework conditions. Quick changes in

models—at best performed by the system itself—have to be

possible. Herbst distinguishes between ad-hoc and evolutionary

changes to the model: Ad-hoc changes describe the modifica-

tion of the structure at runtime and evolutionary modifications

alter more fundamental parts of the process based on variance

analyses [8].

Ad-hoc as well as evolutionary changes on business process

models can be made in workflow management systems—in

general—only by intervention at development level with con-

siderable expenditure, caused by the static nature of the internal

workflow toolkits. Automated structure optimization isn’t

considered in most systems yet.

Therefore the main goal of this work is the development of an

architecture, which defines the business process in a less static

structure. This structure should be customizable by (authorized)

users as well as by the system itself. Furthermore it must be

possible to instantiate and run the business processes with

support of the workflow tools the systems have on-board.

Experiences and usage data are collected and stored in an

appropriate repository and can be used for further analysis and

as basis for optimization.

An extension of the model, which needs automatic structure

modification beyond evolutionary changes, is the introduction

of additional restrictions. Exemplary the extension of capacity

limits in single process steps is described later. Capacity limits

can be limited transport volumes, human resources or limited

throughput of plants and machines. It’s clear that processes

cannot be instantiated randomly in such cases. The introduction

of artificial dependencies between single process-steps, as well

as usable methods for finding valid solutions permit optimal

schedules for new instances.

First we will present the developed architecture in the following

chapter, which will be extended with exemplary optimization

methods further on. The realized prototype, which is based on

Microsoft SharePoint Workflows, will be presented and

described in chapter 3.

 THREE- LAYERED ARCHITECTURE 2.

This solution is based on a three-layer architecture (figure 1),

where the first layer consists of information about the global

workflow structure and a repository for experienced data. Based

on this information in Layer 2 a cycle-free PDM-structure is

generated for each workflow-instance, representing the

predicted times for each process step. Each node in Layer 2 is

connected to a fixed description in Layer 3 where detailed

information is provided how to handle the given task.

New instances of the workflow shall always be generated on

basis of experienced runtimes and delays; therefore a static

definition of desired values is unnecessary. The required

forecasting-module is defined in Layer 1. Global structure

definitions describing the whole process and dependencies

between single steps are the second element in Layer 1. This is

crucial to obtain correct and runnable instances. This description

is based on relational tables and will be discussed in section

2.1.1. A possible extension using an optimization algorithm to

retrieve valid solutions for a capacity-bounded system is given

in section 2.1.3.

The development of a so-called meta workflow element (MWE),

which describes one single step of a workflow (or just a logical

connecting expression) for a unique instance (Layer 2), is a

fundamental part of this approach. Each MWE describes the

planned schedule, links to the logic for the connected process-

step and is stored in the knowledge base where it is extended

with its realized durations after the step has terminated. The full

description of the MWE is given in section 2.2.

Layer 3 provides specific execution rules and structures

separately for each task. The integration and connection

between MWE and task-description for dedicated single steps is

shown in section 2.3. Layer 3 is used to reduce the complexity

of the system-independent process-description. Therefore it is

differentiated between dividable and undividable process steps:

undividable process steps, which have to be progressed in the

same way every time, can be coupled to one Layer 3 item. This

approach leads to significant faster results in terms of

optimization. The choice between a high level of detail in Layer

1 (more data and details in the knowledge base) or Layer 3

(faster calculation) is left to the workflow-developer.

Figure 1: Relationship between the three layers. As

result of the preparation-steps in Layer 1 a unique instance is

generated for execution in Layer 2. The instance in Layer 2

contains only MWEs. Each MWE, which is not a logical

connection between different MWEs is bidirectional connected

with a description given in Layer 3.

2.1 Layer 1 – Network generation and optimization

Like illustrated above, Layer 1 includes two main parts to create

an optimal workflow instance for a current situation. A

forecasting-module is started initially, to predict the runtime for

each single step according to the information stored in a

repository with experienced data. This forecast is made for each

undividable set of single tasks given in the structure definition.

We give no proposals for different matching forecasting algo-

rithms here, because the type of approach is strongly dependent

of the concrete case. Most approaches have in common that the

given information has to be transformed to time-series before

analysing the deeper structure and predicting future values.

Motif-based search is a possibility to gather forecasts based on

time-series data like the approach developed by Lin, Keogh and

Lonardi [10, 11].

Based on the calculated runtimes for each step and

unambiguous dependency-descriptions, a graph algorithm

(workflow-steps and dependencies as nodes) returns a complete

schedule for the observed workflow-instance. An optional

structure optimization can be used as pre-process of the

workflow generating graph-algorithm.

2.1.1 Definition of workflows with dependency-

definitions and logical connections: An adequate structure-

and dependency-definition is mandatory for the network-

generation. To accomplish platform independence the

developed structure is based solely on lists / relational tables.

Figure 2 shows the basic approach of a list-based dependency

definition. Goal of the workflow generation is an automated

detection of parallelizable tasks – in figure 2 the tasks B/C and

C/D.

Nevertheless this way of modeling is not sufficient to represent

complex business-process models. Many business-processes

contain split and join operations, representing logical OR-/

AND-relations. The dependency-definitions have to be extended

with logical information accordingly like represented in

figure 3.

Now the network generator has to note that B or C have to be

completed before D can start. D cannot be scheduled

immediately after B, because there is a possibility that B gets

delayed and C ends earlier.

2.1.2 Workflow-generation: Based on the de-

pendency-descriptions and the computed running times a set of

meta-objects is generated, which represents the optimal

structure and duration for the unique instance. The generation of

the elements and retrieval of the optimal start- and end- times

for each process step can be realized using a graph-based

algorithm like illustrated in listing 1. The explained code is

strongly simplified and misapplies the check for loops and

approaches to determine connected predecessors and

successors. Nevertheless, it is sufficient to demonstrate the

common idea. For each node wfItem the earliest possible start-

time is defined by the latest possible end-time of all

predecessors. The function getReadyTasks retrieves all

following tasks, which become available by finishing the

current progressed node (it is possible that successors have

multiple dependencies and don’t get available by completing

wfItem immediately). For each succeeding node the same

procedure is executed recursively.

One meta-element is computed for each processed wfItem, with

inclusion of the given information about successors and

predecessors and the calculated start-and finish-schedule. The

underlying structure is explained in section 2.2.

 Input: Initial Node wfItem

 finishTask(Node wfItem)

1 StartTime = 0;

2 Foreach Predecessor in getPredecessors(wfItem)

3 If Predecessor.startTime + Predecessor.Duration >

 StartTime then

4 Starttime = Predecessor.startTime +

Predecessor.Duration

5

6

wfItem.startTime = StartTime;

wfItem.endTime = StartTime + wfItem.Duration;

7 addToFinishedTasks(wfItem)

8 Foreach WFItem Successor in getReadyTasks(wfItem)

9 finishTask(Successor)

Listing 1: Recursive graph-algorithm to obtain the

earliest possible start- and end-times for each task

2.1.3 Example — Optimization with con-

strained resources: By extension of the given dependency-

descriptions with information about resource-demands for each

task, like shown by the example in figure 4, the complexity of

the problem rises largely. Therefore not only the single tasks

have to be considered, but rather the set of all instantiated and

unfinished workflows. In the example two new instances have

to be scheduled, while a single step (B) demands a bounded

resource. In this case an optimal solution is obvious, but it

should be clear that optimal results cannot be given in a trivial

way when computing more complex models with large sets of

instances.

One approach to retrieve optimal schedules facing constrained

resources was published 1983 by Bartusch. It is based on the

introduction of forbidden sets, which represent the parallel

execution of tasks leading to the violation of one or more

constraints. These forbidden sets have to be solved by creating

artificial dependencies, which define valid sequences for all

tasks. Using a branch-and-bound algorithm the optimal

schedule can be obtained [1].

Figure 4: Dynamic scheduling over parallel

business process instances

Figure 2: Dependency-definition for single steps with

given duration

Figure 3: Extension of the dependency-definition with

logical statements

2.2 Layer 2 – Meta-Objects for workflow-

accomplishment

To achieve the goal of a system-independent workflow structure

it is necessary to model the business-logic separate from the

built-in workflow functions of each standard-system. Therefore

Layer 2 can be understood as abstraction layer between system-

functions and the workflow model. Layer 2 represents a

concrete, optimized process-instance. Each process-step is

represented by a meta-object, which contains all necessary

information like type, runtime-instructions, predecessors and

successors as well as planned and realized times as attributes.

Figure 5 illustrates the attributes of each meta-element.

The inner logic of the meta-object can be implemented with the

default toolkit of standard-workflow software. The distinction

between logical connectors and task-representing meta-elements

is elementary, like shown in figure 6, where the inner logic of

meta-objects is given: first it is checked if the MWE represents

a task or a logical expression.

A logical synchronizing object (AND) would wait until all

preceding tasks have been finished and start each defined

successor afterwards. A logical OR will activate the successors

immediately.

Task-representing meta-objects are distinguished too: there are

self-starting and external-started objects. On the one hand self-

starting objects instantiate and run immediately when they are

ready- they represent tasks that can be accomplished by the user

himself (e.g. filling out a template with given data). On the

other hand external-started objects are instantiated immediately,

but cannot be ran until an external event triggers the object.

These types stand for tasks which will be executed by clients or

partners and the system has to wait for the results (e.g. waiting

for a delivery).

By the definition of a generic object, which can represent as

well tasks as logical connections, it is possible to transform

workflow models with easy computation into nearly every

standard workflow system. The necessary data can be stored in

list-structures or simple objects. The structure of the meta-

elements can be built upon standard workflow systems with

given toolsets; 1:1 connections are made by setting attributes to

the meta-objects.

2.3 Layer 3 – Runtime-directions for undividable

process-steps

Each task–associated meta-element is connected to an explicit

runtime-description which reflects exactly the way to handle the

according process-step. This description can be defined and

implemented with tools given by the workflow-management-

system and can be instantiated and started either by the user or

the preceding meta-element. An appropriate interface between

meta-element and runtime-description is elementary for the

interaction between these elements. The sub processes in Layer

3 have to be extended with functions which store reference-

information to the meta-object at runtime and functions which

return termination information when finishing the Layer 3

description to continue the workflow according to the meta-

objects in Layer 2.

 PROTOTYPE 3.

The introduced concept has been prototypal implemented based

on Microsoft SharePoint 2010. Goal of the development was to

model a standard purchase-process and the abstraction of the

model to the illustrated dependency-structure. The prototype has

further been extended with the forecasting component which

was explained with Layer 1. This component retrieves future

runtime values for new instances on basis of finalized instances.

SharePoint offers out-of-the-box document management and

workflow capability and toolsets. This enables the

implementation of Layer 2 meta-elements and the task de-

scriptions (Layer 3) immediately.

Figure 5: MWE with attributes

Figure 6: Runtime logic for meta-objects

3.1 Particular case model and logical connectors

The realized workflow is based on standardized descriptions

given in VDI 4400 part 1 [15]. However, the description of the

operative purchasing is branched to the steps disposition and

order. To model a more complex process the steps in VDI 4400

have been extended with information in standard literature [7].

The prototype has been expanded with elements to gather

deliverer-ratings and to realize an automated selection of the

best deliverer for a single instance. To keep the focus on the

underlying structure we won’t give more details about these

components in this paper. The resulting process is illustrated in

figure 7; starting with a demand several steps have to be

accomplished to cover this need.

 Figure 7: Process-structure of the prototype

The modelled process clarifies the relevance to implement

different logical connectors in the software, split as well as join

connectors have been used to cover different cases.

At the current development level only join-connectors are

represented by meta-elements, because they don’t need a deeper

semantic than “trigger all successors after all predecessors have

finished” for AND and “trigger all successors after any

predecessor has finished” for OR connections. Split-connections

have to introduce situation-dependent semantics. This case has

been excluded by checking a given flag in the preceding object

in all successors and terminating all paths which don’t fit the

implemented structure. A logical AND split is trivial, because it

is the typical case of starting all available successors without

any further test.

3.2 Implementation with Microsoft SharePoint 2010

The primary goal of the realisation of the prototype with

Microsoft SharePoint 2010 was to implement the introduced

architecture in a commonly used software product. A second

goal was an intensive document usage, because most business

workflows have document relationships. SharePoint supports

natively a strong connection between documents and

workflows. The core-tasks were:

- representation of the architecture and model with lists

- realisation of an unique structure of dependency

descriptions

- development of an object, which represents the

described meta-element and stores relevant data

- modelling and implementation of undividable tasks

(Layer 3) and creation of connections between

documents and workflows

The applied list-structure is shown in figure 8. It’s clear that

beginning with a demand, each task is connected and

encapsulated with a unique meta-object. Looking on

implemented lists, one list for each type of task was created, one

list contains all meta-objects and one further list contains the

main demand-objects, represented by documents. The approach

to store all meta-objects in a common container eases the

forecasting and optimization procedures, because the whole set

of necessary information is available in the same place.

The implementation of the meta-object has been done using a

list-entry, which is being connected to the workflow at

instantiation, like described in figure 5. The runtime structure

(figure 6) of the meta-object can be realized with the toolset

given in SharePoint. Furthermore the list contains columns to

store information about predecessors and successors, planned

and realized timings and the connection to the workflow in

Layer 3. Based on this information it is possible to operate the

whole workflow.

Additionally there a separate workflow was implemented,

which performs the necessary initialisation- and optimization-

steps in Layer1 and one workflow for each task in level 3.

The explained dependency descriptions have been declared in a

separate list, containing only information about the structure

like before/after definitions and logical implications. This list is

comparable to the tables given in figure 2 and 3 and is enriched

with references to Layer 3 tasks and documents. Logical parts

have to be flagged with an additional parameter defining the

type of the connection (AND / OR).

Figure 8: List-structure in SharePoint, each box

represents one dedicated list. Lines show direct connections

between objects

The introduced information-types suffice to transfer complex

business process models into the standard software. By giving a

clear structure on list-basis it is possible to modify the

dependencies in terms of optimization (like the creation of

artificial dependencies in 2.1.3). In addition this style of

modelling is much more maintainable than the static workflow

models given in SharePoint 2010, because little changes in the

list can alter the whole workflow without using complex

development suites like visual studio.

 DISCUSSION 4.

The introduced concept is capable of being extended in various

ways. The main goal to transform business process models to a

generic form, which can be implemented in proprietary

software, has been fulfilled. The possibility to add complex

approaches for optimization and structure adaption is given.

The formal definition and description of the logical connectors

remains an open point. By extending the concept with

optimization methods which adapt the system to recognized

user- or system-behavior the need for formal model checking

arises. This model checking needs semantic specification for all

components of the system, therefore a concrete description has

to be defined. A possible extension would be a petri-net based

semantic, like introduced by Hinz, Schmidt and Stahl [9] or

Dijkman, Dumas and Ouyang [5]. They give the opportunity for

automatic model checking while defining the initial model and

dependencies as later when the structure is being altered by

algorithms.

While join operations have been modeled by special Meta-

Objects, this is not the case regarding split connectors. A

possible extension of the concept would be the introduction of

case-based reasoning methods, which choose the applicable

decisions at runtime. Weber and Wild published an approach

which could be used as fitting element. In this work the usage of

a repository containing experienced data can be used to improve

the difference between planned and realized runtimes [16].

At the moment only XOR and AND connections, formal OR

definitions, loops and loop breakers as well as a stronger focus

on temporal properties of the elements are open tasks and have

to be linked to the already stated extensions.

Focused on EPC-modeling only End-Start relationships are

available in the current version. The introduction of Start-End or

End-End relationships is needed to represent more complex

dependencies, like given in production environments (e.g.

adhesion processes).

Beneath structural extensions there is much potential by

extending the first layer with a bunch of forecasting and

optimization approaches. In the area of forecasting especially

time-series analysis and prediction is interesting. Facing better

optimization one capacity restricted example has been shown,

but comparable methods can be used to model and solve

problems regarding cost, usage of resources and many more.

 CONCLUSION 5.

This paper develops an approach to use any business process

model in abstracted form in proprietary standard workflow

systems. By using a very simplified formulisation it is possible

to save complex business processes in list structures and adapt

them regarding the system without altering the workflow codes.

Beneath the possibility to switch the models, regarding an

appropriate dependency based model, between different systems

the loose connected structure enables optimization on a

structural level. These optimization methods can be used

autonomously to improve and adapt the planed timing of each

instance regarding an automatically generated repository of

experienced data. Finally the model is extendable with

restrictions and boundaries like shown exemplary with limited

capacity.

[1] M. Bartusch, Optimierung von Netzplänen mit An-

ordnungsbeziehungen bei knappen Betriebsmitteln, Ph.D.

thesis, Universität Passau, 1983.

[2] J. Becker and D. Kahn, Der Prozess im Fokus. Prozess-

management, 5. Edition, Springer, 2005, pp. 3–16.

[3] F. Bernerand, B. Kochendörfer, R. Schach, „Netzplantechnik“,
Grundlagen der Baubetriebslehre 2, Teubner, 2008, pp. 99–126.

[4] T.H. Davenport, “Process Innovation: reengineering work through

information technology”, Harvard Business School Press, 1993,
p. 5.

[5] R. Dijkman, M. Dumas, and C. Ouyang, “Semantics and Analysis
of Business Process Models in BPMN”, Information and

Software Technology 50(12), 2008, pp. 1281-1294.

[6] W. Esswein, „Das Rollenmodell der Organisation: Die Berück-
sichtigung aufbauorganisatorischer Regelungen in Unternehmens-

modellen“, Wirtschaftsinformatik 35, No.6, 1993, p. 551–561.

[7] O. Grün, S. Kummer and W. Jammernegg, Grundzüge der Be-

schaffung, Produktion und Logistik. Pearson Studium, 2009,

p.33.

[8] Herbst, Joachim: Ein induktiver Ansatz zur Akquisition und

Adaption von Workflow-Modellen. Tenea, 2003.

[9] Hinz, S.; Schmidt, K. and Stahl, C. (2005), Transforming BPEL to

Petri Nets,Business Process Management; Lecture Notes in

Computer Science, pp. 220-235.

[10] J. Lin and E. Keogh, “Clustering of time-series subsequences is

meaningless: implications for previous and future research.”
Knowledge and Information Systems, 2005, pp. 154–177.

[11] J. Lin, E. Keogh, S. Lonardi and P. Patel, “Finding Motifs in Time

Series.” 2nd Workshop on Temporal Data Mining, at the 8th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 2002, p. 53-86

[12] L. Litz, Grundlagen der Automatisierungstechnik: Regelungs-

systeme - Steuerungssysteme - hybride Systeme. Oldenbourg,

2005, p. 224.

[13] M. Mühlen, H. Hansmann, „Workflowmanagement“, Prozess-

management. Ein Leitfaden zur prozessorientierten Orga-

nisationsgestaltung. Berlin Springer, 2002, pp. 373–409.

[14] M. Remco, M. Dijkman, M. Dumas, C. Ouyang, “Semantics and
analysis of business process models”, BPMN, Information and

Software Technology, Volume 50, Issue 12, 2008, pp. 1281-

1294.
[15] Verein deutscher Ingeniere (VDI), Richtlinie VDI 4400 Blatt1,

Logistikkennzahlen für die Beschaffung, 2001.

[16] B. Weber and W. Wild, “Conversational Case-Based Reasoning
Support for Business Process Management.”, Mixed-Initiative

Problem-Solving Assistant, held in conjunction with AAAI

Fall Symposium, 2005.

