
Generation Method for Correct Parallel Programs Based on Equivalent

Transformation

Hidekatsu Koike
Faculty of Social Infomation, Sapporo Gakuin University, Ebetsu, Hokkaido, 069-8555, Japan

Kiyoshi Akama
Information Initiative Center, Hokkaido University, Sapporo, Hokkaido, 060-0811, Japan

Katsunori Miura
Information Processing Center, Kitami Institute of Technology, Kitami, 090-8507, Japan

ABSTRACT

In the equivalent transformation computation model
(ETCM), a set of correct programs is mathematically
defined by a formal specification, and a correct
program can be generated by selecting a program
that is efficient with respect to a desired run-time
environment from the set. In the ETCM, a program
is a set of rewriting procedures which preserve the
meaning of a formal specification—and are thus called
equivalent transformation (ET) rules. In the model,
computation is regarded as the rewriting of a state
that is represented by a set of clauses, and is repeated
until a set of answers is obvious, e.g., a set of ground
unit clauses is typically obtained. The computation is
intrinsically nondeterministic, and hence parallelism
is also inherent. We have proposed a sufficient
condition for correctness of parallel programs based
on the ETCM. In this paper, we present a parallel
program generation method and show how the cor-
rectness of the programs generated can be guaranteed.

Keywords: Parallel Computing, Program Synthe-
sis, Program Correctness, Rule Generation, Equiva-
lent Transformation

1. INTRODUCTION

In this paper, we propose a method for generating
parallel programs based on the equivalent transforma-
tion computation model (ETCM) [1] and additional
algorithms that guarantee correct parallel computa-
tion [2]. In the proposed method, a generated parallel
program is correct with respect to a given formal spec-
ification. In the ETCM, computation can be regarded
as a sequence of equivalent transformations, while a
program comprises a set of equivalent transformation
(ET) rules and descriptions for control of their appli-

cation. We can use a variety of computational pro-
cedures with correctness theorem by using ET as a
basis for computation. A declarative description P
mathematically determines its meaning M(P), which
is intuitively an extension of the declarative semantics
of logic programs. The formal definition can be found
in several papers related to the ETCM, for example
[1, 3]. A rewriting rule is an ET rule with respect
to a declarative description P iff the rule rewrites P
into P ′ and M(P) = M(P ′). We can use various ET
rules for computation in order to improve program
efficiency since ET rules can represent more detailed
procedures than clauses. We designed our program-
ming language with the rule syntax so that it can rep-
resent a variety of ET rules and can execute efficiently
by adopting specified head patterns, one-sided match-
ing, and applicability conditions [4, 5]. A program is
always correct if it consists only of ET rules since the
correctness of each rule is completely independent of
that of other rules. This independence characteris-
tic allows us to check the correctness of each newly
generated ET rule in isolation and then accumulate
them one by one to form a complete program. In
addition, the independence allows us to freely com-
bine ET rules that seem to run the fastest for a given
problem. Given a specification in the form of a declar-
ative description, a hand written set of rewriting rules
may be correct if they are carefully constructed to pre-
serve the semantic meaning of the specification. We
can check the correctness of each rule with rigorous
theory [3, 6, 7, 8] and can even generate a wide class
of ET rules, including non-trivial ones, automatically
[9].

We previously proposed a method [5] in which a se-
quential program is first generated using a program
generation method we developed [9], and then ob-
taining a parallel program by introducing a set of ab-
stracted parallel procedures, represented by rewriting
rules, into the sequential program. The correctness of

all the computation steps for parallelism can be veri-
fied if each of the rewriting rules follows the theories
proposed in [2]. The parallel program can execute
computations in which the degree of parallelism may
vary according to the run time situation, various pro-
cedures run in parallel with shared variables, and the
response time of each of the procedures may differ and
be unpredictable. We use nonogram puzzles as an ex-
ample of such situations.

In this paper, we propose a method for generation
of correct parallel programs from given specifications,
and look at the generation procedures and the rela-
tionship among the procedures in more detailed than
in previous work. We also generalize parallel pro-
gram generation by regarding parallel program gener-
ation as the generation of ET rules from specification,
and discuss the correctness of the programs gener-
ated. The remainder of this paper is organized as fol-
lows: Section 2 recounts the underlying concept of the
ETCM in an intuitive way. Section 3 gives an overview
of our parallel program generation method and intro-
duces the rewriting rules used for parallelism. Section
4 describes the program generation procedures. Sec-
tion 5 discusses the correctness of the proposed pro-
gram generation method. Section 6 compares our ap-
proach with existing approaches. Section 7 concludes
this paper.

2. THE ETCM

Formal Specification as a Declarative
Description

In the ETCM, a declarative description is not a pro-
gram and has no procedural semantics; thus, the order
of the atoms and the clauses used is not significant.
A declarative description only determines its mean-
ing. A simple example of a declarative description,
P = D ∪ Q, is illustrated in Figures 1 and 2. P con-
sists of clause sets D and Q. D declaratively defines
the rules of nonogram; Q presents a specific nonogram
puzzle to be solved and is changed by rewriting rules
at run-time, while D remains unchanged during the
computation process. P implicitly determines the an-
swer to Q (a more detailed explanation can be found
in [5]). A filled cell, , is represented by 1, while a
blank cell, ×, is represented by 0.

ET as Computation

In the ETCM, an answer is obtained by repeatedly
rewriting Q until the answer is obvious, e.g., Q is
transformed into Q′ (shown in Figure 3) after be-
ing rewritten more than one time. Figure 4a cor-
responds to Q—while Figure 4b corresponds to Q′.

D ={

(pat () *pl)<--(allZero *pl).

(pat (*n | *ns) (0 | *pls))

<--(check_c *ns *pl),(pat (*n | *ns) *pls).

(pat (*n|*ns) (1 | *pls))

<--(sub *n 1 *n2),(seq1 *n2 *pls *rest),

(start0 *rest), (pat *ns *rest).

(seq1 *n (1|*pls) *pls2)

<--(> *n 0), (:= *n2 (- *n 1)),

(seq1 *n2 *pls, *pls2).

(seq1 0 *pls *pls2)<--(= *pls *pls2).

(start0 ())<--.

(start0 (0|*rest))<--.

(allZero ())<--.

(allZero (0 | *rest))<--(allZero *rest).

(check_c *ns *pl)<--

(len *ns *nl), (len *pl *pll),

(listSum *ns *sum), (sub *nl 1 *nl2),

(add *sum *nl2 *ml), (>= *pll *ml).}

Figure 1: The knowledge part of P .

In the ETCM, computation is a sequence of rewrit-
ings; and rewriting procedures are specified by a set
of rewriting rules (the syntax of them and procedural
meaning are described in [5]). Computation is correct
iff M(D ∪Q) = M(D ∪Q′).

3. PARALLEL PROGRAM
GENERATION

Overview

Figure 5 shows the relationship among the constructs
of our proposed program generation method. In the
figure, D ∪ Q is a formal specification that mathe-
matically determines the set of ET rules that can be
used. A program consists of a partial set of ET rules,
each of which is selected from the set determined by
D ∪ Q and utilized in the program. There are three
programs in the figure. Each program is given a set
of runtime libraries and application programming in-
terfaces (APIs) that are specialized in its runtime en-
vironment. Programs are abstractly written using a
set of ET rules, and then adapted to various runtime
environments by incorporating with a suitable set of
runtime libraries and APIs. Although our parallelism
model is master/slave, we can represent more than one
process by a program as long as each process can know
its role at runtime. Thus, a program consists of client
rules, server rules, and library rules. Figure 6 depicts
the structure of such a program. It is described in
more detail in a later section.

Q ={

(ans (*11 *12 *13 *14 *15 *16

*21 *22 *23 *24 *25 *26

*31 *32 *33 *34 *35 *36

*41 *42 *43 *44 *45 *46

*51 *52 *53 *54 *55 *56

*61 *62 *63 *64 *65 *66))<--

(pat (1 3) (*11 *12 *13 *14 *15 *16)),

(pat (5) (*21 *22 *23 *24 *25 *26)),

(pat (3) (*31 *32 *33 *34 *35 *36)),

(pat (4) (*41 *42 *43 *44 *45 *46)),

(pat (2 2) (*51 *52 *53 *54 *55 *56)),

(pat (1) (*61 *62 *63 *64 *65 *66)),

(pat (1 3) (*11 *21 *31 *41 *51 *61)),

(pat (5) (*12 *22 *32 *42 *52 *62)),

(pat (3) (*13 *23 *33 *43 *53 *63)),

(pat (5) (*14 *24 *34 *44 *54 *64)),

(pat (2 1) (*15 *25 *35 *45 *55 *65)),

(pat (1) (*16 *26 *36 *46 *56 *66)).}

Figure 2: The query part of P .

Q′ ={

(ans (0 1 0 1 1 1

1 1 1 1 1 0

0 1 1 1 0 0

1 1 1 1 0 0

1 1 0 1 1 0

1 0 0 0 0 0))<--.}

Figure 3: Result obtained by computation.

Client Rules

Requesting rules

The applicability condition for the atoms that are to
be processed in parallel and the procedures represent-
ing how to process the atoms are generalized. The
applicability conditions are as follows:

• An atom that has not been rewritten yet is always
applicable.

• An atom that has been rewritten already is ap-
plicable iff its shared variable is substituted by
processing other atoms.

The first condition and its corresponding procedure
are represented by the following rule:

(pat *n *cs)==>(pat *n ? *cs).

The rule rewrites any two-argument pat atom into
a three-argument pat atom whose second and third
arguments represent the previous and current states
of cells, respectively. The new atom is applicable since
the third argument is more specialized than the sec-
ond argument, which means that the atom has a new

1
3 5 3 5 1 1

2

1 3
5
3
4
22
1

1
3 5 3 5 1 1

2

1 3
5
3
4
22
1

(a) (b)

Figure 4: Example of a nonogram problem and its
solution.

Figure 5: Relationship among the constructs of our
proposed method.

state and then is need to be checked whether a new
substitution is obtained from the atom. The second
condition and its corresponding procedure are repre-
sented by the following rule:

(pat *n *pcs *cs),

{(specialized *pcs *cs),

(sendReq *co (pat *n *cs))}

==>{(copy *cs *npcs)},(pat *n *npcs *cs *co).

The rule is applicable to a three-argument pat atom
whose third argument is more specialized than its sec-
ond argument and a request to process two-argument
pat atom is successfully sent to the server. When
the rule is applied, it copies the current state of the
cells represented by the variable *cs to *npcs and
replaces the original atom with a four-argument pat
atom that has *npcs and *co (an object for commu-
nication [5] with the server) in addition to the original
arguments. The built-in rule (B-rule) specialized/2
checks whether the second argument is more special-
ized than the first argument. The B-rule sendReq/2

encapsulates a procedure that sends a request to the
server for parallel computation [5].

Receiving rules

Receipt of the result of a computation from a server
is abstracted by the following rule:

(pat *n *pcs *cs *co),

{(terminated *co)}

==>{(copy *cs *cs2), (getResult *co *cs),

(makePCS *pcs *cs2 *cs *npcs)},

(pat *n *npcs *cs).

The rule is applicable to a four-argument pat atom
iff the computation being carried out by the server re-
ferred to by the communication object *co has ended.
When applied, the rule copies the current state *cs to
*cs2; retrieves the computation result from the server
and unifies the result and *cs; makes a variable *npcs
representing the previous state of the cells accord-
ing to *pcs, *cs, and *cs2; and replaces the original
atom with a new three-argument pat atom. The B-
rule terminated/1 checks whether the computation
being done by the server specified by its argument
has ended. The B-rule getResult/2 gets the result
from the server and unifies it with the second argu-
ment. The B-rule makePCS/4 makes the new previous
state the second argument of the new three-argument
pat atom according to the substitution made from the
server and/or the outside of the atom while the server
process runs.

Server Rules

A server runs in parallel in a process that processes
a requested computation from a client. The process
is a conceptual parallel process and can be replaced
with a thread at the implementation stage for exam-
ple. A server receives an atom via the sendReq/2 call
by a client, and then makes a clause from the atom.
For example, if (pat (1 3) (*1 *2 *3 *4 *5 *6))
is received, the following clause set, Qs, is made:
Qs ={

(pat (1 3) (*1 *2 *3 *4 *5 *6))

<--(pat (1 3) (*1 *2 *3 *4 *5 *6)).}

By repeated application of ET rules 1 to Qs, Qs
′ is

obtained as follows.
Qs

′ ={

(pat (1 3) (1 0 1 1 1 0))<--.

(pat (1 3) (1 0 0 1 1 1))<--.

(pat (1 3) (0 1 0 1 1 1))<--.}

Qs
′ contains three answers. The server sends a result

made from Qs
′. The way in which a result is made

from a set of clauses depends on the characteristics
of the problem to be solved; so that the way must be
appropriately specified with respect to the problem.
In this case, the result is made by determining com-
mon values. For example, the result (? ? ? 1 1 ?)

1An example of the ET rules used can be found in [5]

is made from Qs
′ since the fourth and fifth elements

of the second arguments in the pat/2 atoms are all
1. The result is sent via a communication object, i.e.,
the result is set to the container in a communication
object and then the termination flag is set to true
to notify the client that the server process has termi-
nated.

Library Rules

Implementation of the rules for terminated/1,
getResult/2, and sendReq/2 depends on the de-
sired runtime environment. The client rules and the
server rules encapsulate parallel procedures by using
the rules.

Specification-Dependent Rules

Efficient parallel procedures depend on a problem’s
specification. In the above example, the pat atom can
be processed in parallel. Consequently, the requesting
rules and the receiving rules must be tailored accord-
ing to the atom pattern.

4. PROGRAM GENERATION
PROCEDURE

This section details the procedure used in our pro-
posed parallel program generation. The procedure
consists of the following steps: specification writing,
generation of ET rules, preparation of specification-
dependent rules for parallelism, and preparation of li-
brary rules. Each of the steps comprising the proce-
dure is described below. A parallel program is gener-
ated by combining all the rules generated in the overall
procedure.

Specification Writing

In our proposed method, a specification is a declar-
ative description that is represented as the union of
two sets of definite clauses, D∪Q. D represents back-
ground knowledge and Q represents problems of in-
terest. Q also represents an initial computation state
while D never changes at runtime.

Generation of ET Rules

Given a specification P (= D ∪ Q), its declarative
meaning M(P) is mathematically determined and
thus a set of ET rules is determined. If an ET rule
rewrites Q into Q′, then M(D ∪ Q) = M(D ∪ Q′);
thus P also determines a set of ET rules with respect
to P . To generate programs in our proposed method
is to select ET rules that efficiently transform Q into

a form in which the answer to P is obvious (e.g., a set
of ground unit clauses), from the set. The correctness
of handwritten ET rules is verified by proving that the
rules always preserve declarative meaning [3, 6, 7, 8].
We have also developed an automatic rule generation
technique [9].

Preparation of Specification-Dependent
Rules for Parallelism

In this step, the atoms to be processed in parallel are
determined and the requesting rules for the atoms are
prepared. Although the nonogram example discussed
above had only a pat atom as the atom processed
in parallel, more than one different atom pattern can
be processed in parallel in our proposed method. A
specification-dependent rule for parallelism can be de-
termined by determining an atom pattern since, ex-
cept for their head atom pattern, the rules have a
common structure.

Preparation of Library Rules

Library rules are used by specification-dependent rules
for parallelism. The library rules control parallel pro-
cessing functions via APIs. Although the library rules
depend on their runtime environments, they are inde-
pendent of specifications; thus we can assume that
they are sufficiently tested and correct.

5. PROGRAM
CORRECTNESS

Figure 6: General structure of our generated parallel
programs.

Figure 6 depicts the general structure of the par-
allel program generated by our proposed method. It
comprises a common part, a client part, and a server
part. The client part consists of ET rules generated
from specification and the library rules for clients. The
server part consists of ET rules generated from speci-
fication and the library rules for servers. The common
part is independent of a specific problem specification.
Thus, we can assume that the common part is correct.

Correctness of the Client Part

ET rules in the client part are generated from specifi-
cation using our rule generation methods [3, 6, 7, 8, 9].
Thus the rules always yield correct computation. Re-
questing rules and receiving rules in the client part
follow correct parallel procedures [2]. Consequently,
the client part is correct.

Correctness of the Server Part

Just as the client part, ET rules in the server part are
generated from specification using our rule generation
methods. Therefore, the rules are guaranteed correct.
Result construction process is described in the server
part. The process generates a result from the server
computation result, which is correct. Its correctness
is proved by verifying that its procedure is equivalent
to the correct parallel procedures[2].

6. COMPARISON

Various methods for mathematically verifying systems
have been proposed. The approaches generally try to
prove the correctness of target systems by verifying
all possible computation states. However, these ap-
proaches are encumbered by a major scalability prob-
lem called the state space explosion problem. The
consequent solutions for the problem often introduce
some approximations that may cause false warning
or missing errors. In contrast, in our approach, cor-
rectness of an entire system can be strictly ensured
by proving that each rewriting rule is correct. Thus,
the cost of proving correctness can be represented by
O(n), where n is the number of writing rules; which
means that our approach proves correctness at a lower
cost than other approaches. In our approach, we as-
sume that a given specification is correct, a specifica-
tion is completely declarative, and a program is a set
of ET rules with respect to the specification. Also,
in our approach, a programmer can implicitly exploit
parallelism merely by writing a declarative specifica-
tion since specification and program are strictly dif-
ferentiated and mathematically related to each other.
Parallel procedures are generated automatically from
the specification. Parallel execution of logic programs
[10], by contrast, identifies a specification with a pro-
gram so that a programmer may have to write elab-
orate control code in order to ensure efficiency. Con-
straint Handling Rules (CHRs) support a very fine-
grained form of parallelism [11] can be viewed as a
proper subclass of ETRs [12]. However CHR theory
does not have a specification of a program from the
point of view of the ETCM. Correctness of computa-
tion in the CHR theory is based on the logical equiva-
lence of computation states and confluence [13] while

correctness of computation in the ETCM is based on
meaning preserving transformation. In the ETCM,
any kind of procedures can be used as long as they pre-
serve the meaning of a declarative description. Such
procedures include extra-logical operators and proce-
dures represented by multi-body rules, which CHR
theory does not allow [12].

7. CONCLUSION

In this paper, we proposed a method for generating
correct parallel programs from given formal specifi-
cations. In our proposed method, abstracted parallel
procedures, represented by ET rules, are accumulated
to generate a parallel program. A program comprising
a set of ET rules is guaranteed correct as each ET
rule is individually correct. This paper distinguished
abstract parallel procedural representation from
low-level, environment-dependent representation of a
program by using rewriting rules. As a result, we can
adapt parallel programs generated using our proposed
method to various runtime environments by giving
them a suitable set of runtime libraries and APIs.

Acknowledgements
This study is partly supported by the Collaborative
Research Program 2012, Information Initiative Cen-
ter, Hokkaido University, Sapporo, Japan.

8. REFERENCES

[1] K. Akama, T. Simizu, and E. Miyamoto, “Solving
problems by equivalent transformation of declar-
ative programs,” Journal of the Japanese So-
ciety for Artificial Intelligence, vol. 13, pp.
944–952, 1998.

[2] K. Akama, E. Nantajeewarawat, and H. Oga-
sawara, “Generation of correct parallel programs
based on specializer generation transformations,”
in Proceedings of the 7th international
conference on intelligent technologies (In-
Tech’06), 2006, pp. 90–99.

[3] K. Akama, E. Nantajeewarawat, and H. Koike,
“A class of rewriting rules and reverse trans-
formation for rule-based equivalent transforma-
tion,” Electronic Notes in Theoretical Com-
puter Science, vol. 59 (4), pp. 1–16, 2001.

[4] H. Koike, K. Akama, and H. Mabuchi, “A
programming language interpreter system based
on equivalent transformation,” in 2005 IEEE
9th International Conference on Intelligent
Engineering Systems (INES 2005), 2005, pp.
283–288.

[5] H. Koike and K. Akama, “Generation of cor-
rect parallel programs guided by rewriting rules,”
in Proceedings of The 2011 International
Conference on Parallel and Distributed
Processing Techniques and Applications,
vol. 1, 2011, pp. 12–18.

[6] K. Akama, E. Nantajeewarawat, and H. Koike,
“Componentwise program construction: Re-
quirements and solutions,” in WSEAS Trans-
actions on Information Science and Appli-
cations, vol. 3, 2006, pp. 1214–1221.

[7] K. Akama, E. Nantajeewarawat, and H. Koike,
“Program generation in the equivalent transfor-
mation computation model using the squeeze
method,” in Perspectives of Systems Infor-
matics PSI2006, ser. Lecture Notes in Com-
puter Science, vol. 4378. Springer-Verlag, 2007,
pp. 41–54.

[8] K. Akama and E. Nantajeewarawat, “Formaliza-
tion of the equivalent transformation computa-
tion model,” Journal of Advanced Compu-
tational Intelligence and Intelligent Infor-
matics, vol. 10, no. 3, pp. 245–259, 2006.

[9] H. Koike, K. Akama, and E. Boyd, “Program
synthesis by generating equivalent transforma-
tion rules,” in Proceedings of the Second In-
ternational Conference on Intelligent Tech-
nologies (InTech’01), 2001, pp. 250–259.

[10] G. Gupta, K. A. M. Ali, M. Carlsson, and
M. V. Hermenegildo, “Parallel execution of pro-
log programs: A survey,” ACM Transactions
on Programming Languages and Systems,
vol. 23, p. 2001, 1995.

[11] T. Frühwirth, “Parallelizing union-find in Con-
straint Handling Rules using confluence,” in
Proc. of ICLPf05. LNCS, vol. 3668. Springer-
Verlag, 2005, pp. 113–127.

[12] Y. Shigeta, K. Akama, H. Mabuchi, and
H. Koike, “Converting constraint handling rules
to equivalent transformation rules,” Journal of
Advanced Computational Intelligence and
Intelligent Informatics, vol. 10, pp. 339–348,
2006.

[13] E. S. Lam and M. Sulzmann, “Concurrent goal-
based execution of Constraint Handling Rules,”
Theory and Practice of Logic Program-
ming TPLP, vol. 11, pp. 841–879, 2009.

