
Practical Lessons for Applying Technology
 to Knowledge Dissemination

Susanna Cantor and William Savage
 RTI International
Durham, NC USA

Gary Franceschini
La Trobe University
Melbourne, Australia

1 Abstract
One of the hardest activities in any large project is
keeping all team members on the same page when it
comes to expectations, processes and consistency of
information.

When a project team includes both internal members
and external partners, providing consistent
information to all team members securely becomes
difficult. Attachments to emails clog inboxes.
Multiple document versions flying through
cyberspace in crisscrossing email threads undermine
effective document management and change control,
injecting confusion into project operations.

Knowledge management begins with a central, easily
accessible but secure means to share information in a
timely manner and maintain it over the life of the
project. In this paper, we will look at how the
Knowledgebase Management Team (KB Team) for a
large project at RTI International chose to develop a
knowledgebase (KB) using the Drupal framework to
distribute clear, concise and valid project information
across geographic and organizational boundaries. [1]
Using the Drupal site the KB Team developed as our
example, we will explore the concept of a central
KB, our implementation approach, our three main
challenges to success, and the lessons we learned.
The biggest lesson? Communicating knowledge can
be the hardest part of managing knowledge.

Keywords

Knowledge Management, Communications, KGCM
concepts, theories, models and methodologies,
technologies, supporting systems, tools and
techniques

2 Project Background
The RTI project was centered on a federally-funded,
multi-component system using an Internet-accessible
secure website with more than 40 staff serving

approximately 700 system users. An essential
component of this project was a help desk based at a
sub-contractor’s office in another state. The help
desk served the website users – federal grantees who
entered data about their programs. The help desk
agents needed knowledge about the project to help
the grantees use the website for performing data
entry, data upload and download; running reports
and obtaining current information about the project,
such as a quarterly newsletter and other relevant
information.

As sub-contractors, the help desk agents did not have
access to RTI’s internal network, where most of the
project knowledge was electronically stored. Early in
the project, we found that help desk agents needed
more than the information provided in an FAQ and
other documents posted to the website. They needed
to be able to quickly access controlled, valid
information and trust that it was current and correct.

3 Approach
The KB Team determined that the best way to
provide trustworthy information to the help desk was
to create an online centralized knowledge repository
where operations and client support information
could be made available for easy access by the entire
project team.

The KB would serve two purposes:

 Centralize knowledge about the project
system in a searchable repository.

 Provide a means to disseminate project
information to all team members, regardless
of work location and network access.

The KB would enable the help desk to offer better
support to the grantees, and allow the technical group
to share system operation and maintenance
information, and the full project team to
communicate consistent information.

The KB Team investigated several software options,
and chose Drupal as the framework for the repository

for its cost (free), its significant international user-
base, its perceived ease of configuration and its
ability to provide secure, role-specific content from
one location. In addition, the team discovered an
extensive user and developer community that
actively supports each other and is available for
consult if needed. All these attributes were attractive
to a federally-funded project with limited resources
to develop internal infrastructure.

Before we began configuring Drupal, we asked the
entire project team, including members based with
sub-contractors, to define requirements for the site.

At a high level, everyone agreed we needed a way to
create, post, and manage content, and search posted
content on role-based information pages. The pages
would be deployed in stages as we had topics to post.
We assumed we would reuse existing project
information and that the various task teams would
provide new content on a regular basis.

We then, as a group, defined system requirements for
the framework, users, and the interface. Our help
desk sub-contractor developed use cases to define
how they would use the site.

Once the project team approved the requirements,
the KB Team set out to configure the site.

We first downloaded and installed the Drupal core
system, which resulted in a functional but empty
website that supported site administration, content
management tools, user management, security, and
administrative reporting.

Next, we selected a theme, defining the basic layout
and look, including display colors, navigation,
menus, and buttons.

The Drupal community provides many modules,
which are small, discreet, often powerful
applications that can be added to a Drupal website.
The KB Team worked hard to identify the modules
to provide the desired functionality. Our Drupal
configuration utilized approximately 35 modules,
including Comment (allowing users to discuss
content), Taxonomy (allowing users to quickly find
content), Upload (allowing users to add content), and
Notifications (allowing users to subscribe to content
most critical to them).

Once the basic system, theme, and modules were
established, the team performed various
administrative actions. These included defining roles
and taxonomy terms, and creating users with roles.

With a basic site configured, we:

 compiled a matrix of existing
information and its location on the
network share drive, which would

comprise the initial KB

 identified the relevant taxonomy that
would drive search results

 identified the roles that would need
the information

 assigned one person to input the
content.

Each piece of information was converted into a
Drupal topic and its node or topic number noted in
the matrix. This allowed us to track our progress and
ensure we input the correct content for the release
phase.

After we had input and verified the content, we
released the KB to production.

Challenge 1: It’s not as easy as it
looks.

As with any project that shows promise, standing up
the Drupal site seemed to make sense. Drupal is
highly configurable, with hundreds of modules that
are easy to install and appeared simple to configure.
Technical staff on the project planned to “figure it
out” and, in a few weeks, create the vessel into
which knowledge would flow.

The reality is that Drupal’s 49 module categories [2],
each with multiple features and possible
functionality, provide so many possibilities that it
required time to research each one to determine
which would provide the best features to build our
KB.

The team’s hopes of quick configuration quickly
faded into the reality that there was more to Drupal
than met the eye, especially since we had no prior
experience with it and no internal resources we could
turn to, and we had to devote more time than
anticipated to eventually achieve the results that we
needed.

Because so many configurations were possible, there
was no clear step-by-step configuration map that
resulted in a finished site that met our needs in the
timeframe we had allowed. We were also unsure if
the modules had to be installed in a specific order
(they do) or if there were dependencies that needed
to be respected (there are).

Over the course of multiple sessions each week for
several weeks we managed to build the basic site that
could then be populated with content.

A small number of PDFs were uploaded as
attachments to pages, but the bulk of the content was
hard-coded in HTML using Drupal’s Create Content

function. This required the skills of a documentation
specialist with HTML coding abilities.

Once the content was input, it was verified by project
team members and the system was tested before we
could declare it ready to use.

Challenge 2: Why use a new system
when ours works just fine?

Although the entire project team, which included
both RTI and external partners, agreed the KB was a
good idea, it became clear over time that old habits
die hard. RTI had a process for producing and
circulating project information, and our sub-
contractor had its own process. Each found it hard to
shift to a new way of sharing information, and using
the KB rather than internally stored documents
proved a challenge for the entire team.

Project team members also had to learn the new
system. The help desk could not shut down for
training; it had to continue managing calls from
website users. In the heat of battle, the sub-contractor
staff fell back on their known and familiar processes,
which included maintaining a local repository of
information to answer the questions.

On the RTI side, staff focused on meeting project
deadlines and did not have the bandwidth to learn a
new process or system, despite the fact that the KB
Team provided training and one-on-one support.

Plans to control project documentation by managing
postings to the Drupal site fell by the wayside as the
project team fell back into individual habits to get the
work out the door.

Even the staff tasked with creating the KB found that
other project duties diverted their attention to
continuous monitoring of the site and its contents.

Challenge 3: What, you want me to
maintain all that stuff?

Initially, the KB implementation team gathered
project operational documentation and set out to post
it to the Drupal site. The task was time-consuming
but routine: turn current project information into
topics on the site, reference those topics to role-based
pages and publish them so the help desk and other
project task teams could use it.

Once the initial content was loaded, we created a
process to add new content and appointed content
administrators who, on their own, would initiate
posting of important information. We also set up a
workflow for editing and linking the content to the
correct page. However, the task eventually fell to one
or two people to actually post content, and the idea

of a content team distributed across the full project
team slowly devolved.

A related challenge was reviewing and updating the
posted content. This task proved difficult because the
project had not initially allocated resources for a
dedicated webmaster to regularly review the site for
outdated items.

Eventually, we assigned a webmaster who managed
the technical and content areas of the site. He also
created a Drupal “cookbook” that provides step-by-
step instructions on how we created the site,
including the sequence of the configuration and the
settings we used. The document was to be used by
other RTI projects who were interested in standing
up a Drupal site. However, when our webmaster left
RTI, he took with him the detailed knowledge
required for our continued Drupal success.

4 Lessons Learned
Our experience taught us valuable lessons in
managing knowledge and communicating it to others
who need it.

More Choices

The first lesson is this: examine as many KB
framework choices as you can. There are many, and
it is critical to understand as much as you can about
the complexities and trade-offs of the tools being
considered. Drupal is only one of several candidate
tools.

Since the KB Team built the Drupal site, other RTI
projects have employed different tools to serve the
same purpose. LifeRay, SharePoint and MadCap
Flare have been used as alternatives for KB
frameworks.

LifeRay: LifeRay, an enterprise web platform, [3]
has enjoyed limited use on some RTI projects. In one
example project, LifeRay was used to provide an
out-of-the-box framework to support entering and
sharing grant progress information, with a supporting
workflow process to manage review and acceptance
of submitted information. The framework was
enhanced with custom Java controls, and the
resulting system was deployed onto an Oracle
database.

SharePoint: RTI has set up a central SharePoint
portal and can configure project-specific sites as
needed. SharePoint provides document management
and control, is scalable and can be fully integrated
with business intelligence tools. [4] It supports .NET,
jQuery and Silverlight and has available a vast array
of resources in the form of consultants, on-line
information, books and plug-ins. [4]

Projects, especially those that work with sub-
contractors who don’t have access to RTI’s internal
networks, use SharePoint to pass documents around
the team for review, compile monthly contract
compliance reports, post project team contact
information and keep a calendar of important project
dates. Some also devise ticketing system workflows
that track project activities through SharePoint.

At RTI, about 80 different projects [4] maintain
information and collaboration sites and sub-sites,
some of which are accessed by non-RTI project team
members. RTI itself uses SharePoint for KBs,
document storage, calendars and discussion boards.

Madcap Flare: Documentation specialists in RTI’s
Research Computing Division have used Flare [5]
for a number of years to create user information that
can be posted online. In Flare 8, the current version,
new features support populating a KB using content
created and managed through this software.

Basics for a KB include using Flare to produce the
content and output it in a searchable, indexed packet;
using companion software Madcap Contributor to
allow subject matter experts to review content and in
some instances create it; and maintaining all the files
in a source control repository, such as Subversion.
[6]

Flare also allows content to be imported from other
sources, including Microsoft Word, which our
Drupal site was not configured to do. This makes it
easier to start populating a KB when the content can
flow in and doesn’t have to be hard-coded. And,
certain configuration files, such as CSS, skins and
templates, can be imported by and shared with other
Flare projects.

These are just three possible alternatives to Drupal
that have proven useful in centralizing information
for communicating knowledge. If anything, this
lesson taught us to ask better questions about
usability and ease of workflow once the KB is built.
Because these alternatives were easier for RTI
projects to use, some have moved away from
considering Drupal as a knowledge management
framework.

Content Life Cycle

Plan to regularly review and update your KB content
efficiently and on a consistent schedule. If you set up
a KB, you should commit to maintaining the content,
and putting it on a life cycle with regular review and
updates. Regular review will help remove invalid
content and add new topics as needed. It will keep
things fresh.

Content in our project KB was valid at the moment it
was posted, but as the project progressed,
information evolved at a rapid pace. Even with a
dedicated webmaster, we found we lagged behind in
the updates.

For the next KB, as with any project document, we
plan to review all content each year by dividing it
into quarterly update increments. We will assign
each topic a review period, and during that period,
designated authors or content managers will review
or update any information that has changed. We also
will set up Microsoft Outlook reminders so we do
not forget.

The team should also control versioning of all topics
so that the project is using the correct, most recent
information. With each annual review, the team will
advance the version number a full-number increment
and track the expiration dates so we can easily do it
all over again the next year.

Of course, urgent updates can be made at any time.
But if you have a life cycle mapped out and
implemented, you can ensure that all your content
can remain valid – and useable – over time.

Top-Down Compliance

Finally, we learned that encouraging the project team
to use the KB starts at the top and flows down to the
rest of the team.

Engage project leadership to enforce the “use the
KB” rule. Even though project leadership endorsed
the concept of a KB and we developed a standard
operating procedure governing its maintenance and
use, it fell to one person to enforce its use. And with
project leadership focused on meeting contractual
obligations, we lacked a clear approach to
reinforcing the need for and use of the centralized
repository.

Engaged project leadership can help guide team
members who have difficulty remembering the
message and benefits.

5 Acknowledgements
The authors appreciate the assistance of:

 Dan Reid, RTI, for providing details
of RTI’s use of SharePoint.

 Craig Hollingsworth, RTI, for editing
assistance.

6 References
[1] http://drupal.org/

[2] http://drupal.org/download

[3] http://www.liferay.com/

[4] D. Reid, K. Britt, S. Kalinga, SharePoint
Overview (selected slides), RTI International, 2012.

[5] http://www.madcapsoftware.com/

[6] N. Perlin, Using Flare as a Content Management
System, MadCap Flare Webinar recorded April 17,
2012.

