

Available and Reliable Services

J.L. Pastrana, E.Pimentel
Dpto. de Lenguajes y Ciencias de la Computación

University of Málaga. Málaga, Spain

{pastrana,ernesto}@lcc.uma.es

M. Katrib
Departamento de Computación

University of Havana. Havana, Cuba

mkm@matcom.uh.cu

Abstract—This paper presents a framework and a tool for

reliable and available services composition and coordination

based on connectors defined by service client and automatically

generated by the COMPOSITOR tool we have developed.

Connectors use contracts to express the non-functional

requirements and the behavior desired by the client of a service,

such as QoS (Quality of Service) features. The connectors

generated are self adaptive. The adaptation enactment is based

on using an OWL ontology of the server domain which is used to

adapt any mismatch when invoking a service at run-time if the

server is updated or replaced. This makes services reliable and

available.

Keywords-component; Services; self-adaptation; Availability;

Reliability

I. INTRODUCTION

Self-adaptive software systems [1,2] are those able to

manage changing operating conditions dynamically and

autonomously. Such self-adaptive systems can configure and

reconfigure themselves, augment their functionality,

continually optimize themselves, protect themselves, and

recover themselves, while keeping most of their complexity

hidden from the user and administrator. Currently, most

proposals in this field rely on an explicit representation of the

components and goals of the system (usually following a top-

down approach), or on the definition of local rules for the

different elements of the system, which results in an emergent

self-organizing behavior (hence following a bottom-up

approach). Both these approaches are suitable for closed

systems, that is, those whose constituent components are well

known at design time, or where there is no need to explicitly

represent the goals of the system.

However, there are many situations in which software

systems are open, and the changes in their execution

environment are directly subject to the availability of a

particular service, which may join or leave the context of the

system at any given moment. These systems lack a predefined

description of their architecture and components, and even of

their goals. In such open systems, new adaptability problems

arise, such as the connection and disconnection of a new

software component to an already running system; or how to

solve interoperability issues among third-party components not

specifically designed to interact with each other.

The current proposal presents a framework (including a

methodology supported by a tool) based on a notion of

connectors that allows using and composing Web Services. It

also allows the non-functional requirements of a service client

to be set. This way the user of a service can set the behavior

and QoS features (performance, security, network reliability,

etc.) he/she expects from it. Moreover, connectors use one

ontology of the server domain to provide self-adaptation, so the

system developed will work properly even if a new Web

Service comes into the system, or the current Web Service is

updated.

The current proposal takes into account a development

methodology associated to connectors, supports QoS including

specific QoS-related primitives such as Authorized, TimeOut

and AverageResponseTime, presents a new predefined

primitive to express non-functional properties (Ignore) and

improves the adaptive features of connectors allowing it to

discover and connect to a new server using primitives such as

connectTo, SetUDDIServer and SetListServers, as well as,

adapting a service as a composition of some services and

solving data conversion problems. Finally, some benchmark

tests have been taken in order to evaluate the cost of using

connectors and the cost of the adaptation process.

The case study of a library application where users can

load/upload papers has been selected, in order to explain the

different concepts with a consistent reference scenario that runs

through the whole paper. Basically, the application will use an

external Web Service for papers storage and management and

both work together in a loosely coupled way. This case study

will be used to show how using our framework, the non-

functional and QoS requirements of a client can be expressed

using Meyer design by contract style (for example, suspending

a call to synchronize, ignoring a request and returning a new

value, null object refactoring, changing the server used when

the average responding time is greater than wanted, etc.), and

how the framework can automatically solve the run-time

adaptation problems caused when the server is updated or

replaced by other semantically equivalent.

II. THE FRAMEWORK

One of the main goals of Web Services is reusability, and,

one of the essential tasks in service-based software

development is finding the right Web Service providing the

functionality and interface required by component clients. Once

the services are identified, a connector can be used to adapt the

behavior and to set the nonfunctional requirements desired of

the Web Service, without modifying the services themselves.

The steps for this adaptation involve the definition or selection

of one of the existing ontologies of the domain of the server,

setting the invariant wanted for the Web Service and what to do

when it fails as well as setting the precondition and the

postcondition wanted for each service and what to do when

they fail.

A connector is itself a Web Service that mediates between

the client component and the server. Hence, the connector

mechanism does not try to change any internal part of the

server. A connector is a component for managing, connecting

and adapting the behavior of a server component for any client.

All the constraints imposed on the server are established as

contracts (preconditions, postconditions and invariants)

represented by logical expressions.

The connector checks the invariant and the preconditions

for each service before calling it and checks the postconditions

and the invariant when the server returns the control. It can also

execute some defined actions when the contract fails. This way,

a client is able to set how he/she wants the server to behave and

he/she is also able to set what should be done when the

requirements fail (Figure.1).

Connectors present the following features:

 Defined by clients and implemented as a Web Service.

 Using contracts to express the QoS properties and non-

functional behavior s expected by clients.

 Automatically generated.

 Allowing clients to work with one or more different

servers obtaining the same behavior.

 Allowing clients to use a server as it was a monitor.

 Enriched with server domain ontology in order to adapt

requests.

 Allowing extension techniques (inheritance, delegation

and composition).

These features improve the traditional concept of connector.

Using design by contract, the connectors will not be just a type

or interface adaptor. They allow the client to define under

which conditions they wish the service to be executed and what

to do when a contract (precondition, postcondition or invariant)

fails. Connectors are active components, so they have an

internal state which makes possible to do actions before and

after the call (for example, to suspend a call until its

precondition be satisfied).

Figure 1. Connector Model Activity Diagram

Moreover, contracts allow non-functional requirements to

be expressed as synchronization or timeouts, as well as QoS

properties for each service.

Finally, connectors are able to achieve dynamic adaptation.

They use an ontology and an inference machine (Prolog) to

adapt not found requests when the server has changed or been

updated. The run-time adaptation process is executed when the

connector tries to call a service and gets a „„not found service‟‟

exception from the server. Then, the connector gets by

reflection all the services provided by the server and using a

first order predicate logic engine tries to unify the requested

service with the knowledge expressed in the OWL ontology

provided to the connector which has been translated to Prolog

Horn clauses. Every class defined in the ontology is translated

to an owlClass clause, every property is translated to an

objectProperty clause and every subclass, every “same as”

relationship and every equivalence relationship defined in the

ontology are translated to owlSubClassOf, sameAs and

equivalentClass clauses.

We will present now the Prolog rules used to adapt a

request. Just only the main clauses will be detailed where the

definition of some auxiliary clauses could be assumed.

canBeReplaced(C1,S1,P1,C2,S2,P2):-

owlClass(C1), canBeReplacedClass(C1,C2),

objectProperty(C1,S1,P1),

canBeReplacedProperty(S1,S2),

equivalentParam(P1,P2).

This rule means that a call to a service S1 of the server C1

with the parameters P1 can be replaced by a call to a service S2

of the server C2 with the parameters P2 if the server C1 and the

service P1 are defined in the ontology and C1 can replaced by

C2, S1 by S2 and the parameters P1 and P2 are equivalents.

To replace a server by other we use the following rules:

canBeReplacedClass(C,C).

canBeReplacedClass(C1,C2):- owlSubClassOf(C2,C1).

canBeReplacedClass(C1,C2):- sameAsReflexive(C1,C2).

canBeReplacedClass(C1,C2):-

equivalentClassReflexive(C1,C2).

These rules mean a server can be replaced by itself, by a

subclass or by a server which is defined in the ontology as the

same or equivalent. In addition, to replace one service by

another we use the following rules:

canBeReplacedProperty(S,S).

canBeReplacedProperty(S1,S2):-

sameAsReflexive(S1,S2).

canBeReplacedProperty(S1,S2):-

equivalentPropertyReflexive(S1,S2).

These rules mean a service can be replaced by itself, or by a

service which is defined in the ontology as the same (same

functionality) or equivalent (equivalent functionality). Finally,

to replace parameters by others we use the following rules:

equivalentParam([],[]).

equivalentParam([XjR1],[XjR2]):- owlClass(X),

equivalentParam(R1,R2).

equivalentParam([XjR1],[YjR2]):- owlClass(X),

owlClass(Y),canBeReplacedClass(X,Y),

equivalentParam(R1,R2).

equivalentParam(P1,P2):- permutation(P2,LP2),

equivalentParam(P1, LP2)

These rules mean that two sets of parameters are equivalent

if they are empty or they are the same or each individual

parameter from P1 can be replaced by its corresponding one in

P2 in the same order or a permutation. In order to express

parameter type conversion Prolog functions can be used and it

is possible, as well, to write a clause to specify that a service

can be equivalent to a sequence of services. For example, you

can express the type conversion from C2 to C1 through the

function C2ToC1 and the equivalence between S1 and the

composition of the services S2 and S3 through the predefined

function composition as follows:

equivalentClass(C1, C2ToC1(C2)).

equivalentProperty(S1, composition([S2,S3])).

Users may use contracts to define their own non-functional

requirements as well as the behavior to be executed when

contracts fail. Because of a connector is also implemented as a

Web Service using C# and ASP.NET, preconditions,

postconditions and invariants will be valid Boolean expressions

written in C#. The behavior s associated to each contract are C#

sentences. Both, contracts and behavior s can use a number of

predefined predicates and functions that model nonfunctional

or QoS behaviors. In addition, other Web Services (or

connectors) that are going to be used in the context of the

application can be declared using external sentences to be used

as part of the contracts. It is worth noting that a connector can

be used by different clients in order to obtain the same behavior

of a server, as well as using another (or new) connector to get a

different behavior of the same server.

QoS properties can be defined as part of the contracts in the

connectors. Our proposal offers predefined functions for

performance (execution time) and security only because other

features are implicit in the model or its implementation

(scalability, capacity, availability, robustness, accessibility and

interoperability).

 Performance: It is possible to use some performance

metrics in the invariant or preconditions such as response

time (AverageResponseTime predefined function) or

completion time (using Timeout). For example, it is

possible to set as an invariant of a Web Service that the

average response time of any service will be less than a

particular time. This way, the connector will verify this

property before and after a service is invoked.

 Scalability: The delegation extension technique for

connectors allows connectors to be scalable because it is a

way to add new functionalities to the connector.

 Capacity: A connector is a multi-thread Web Service; so

many concurrent requests can be served.

 Reliability, availability and robustness: Self-adaptation

makes connectors robust and fault tolerant.

 Accessibility and interoperability: Connectors are

implemented as Web Services and Web Services provide

seamless connections from one software application to

another because they use standard protocols (XML, http,

SOAP).

 Security: Security can be managed using the Authorized

predefined function. This primitive verifies if a client is

authorized to call the service using digital signatures.

In order to promote effective reuse of connectors, the

proposed approach allows three different mechanisms for

extending connectors: subtyping (inheritance), delegation and

composition. Firstly, inheritance allows us not only to reuse the

same behavior for the server but also to improve the conditions

we need for those services (a weaker precondition and/or a

stronger postcondition). However, connector inheritance is not

allowed to add functionality to the connector. Delegation is a

powerful tool for adding functionality to the connector

statically as well as dynamically (at run-time). Finally, the

composition allows us to implement filter techniques to check

and solves behavior s step by step. In the following sections,

these techniques will be analyzed and how they can be used for

connectors will be shown.

III. THE STUDY CASE

This section will show some features of the connectors via a

simple but easily understandable example. Let us suppose we

want to develop our study case. We have found a paper

database server (a Web Service) which offers the desired

functionality. Following, we will show how to express some

non-functional behavior s and QoS properties:

A. Using suspend to synchronize

Suppose we want to establish that only a registered user

could send a paper. If the user is not registered we are going to

send a register request and wait until he/she is registered before

executing the request. We could set the user being registered as

a precondition of the service SendPaper in the connector and

when it fails the connector will launch the registration process

and it will suspend the SendPaper service until the user is

registered.

void SendPaper(string user, PaperInfo info, string text)

require: Registered(user)

on failure: Register(user);

Suspend();

B. Ignoring a request and returning a new value

Now let us suppose we want unregistered users to be able to

obtain only the abstract of a paper. The GetPaperById request

from an unregistered user will be ignored and the abstract of

the paper will be returned. It could be expressed in the

connector as a precondition for the GetPaperById service.

string GetPaperById(string user, int id)

require: Registered(user)

on failure: _result = GetAbstractById(id);

Ignore();

C. Null object refactoring

Usually, when a client calls a method on a field or variable

that is null, an exception may be raised, a system may crash, or

similar problems may occur. The null object pattern [3]

provides a solution to such problems. Instead of assigning a

null value to a reference-type property, a nullable object can be

used to represent a null value, instead of directly assigning a

null value itself. This makes it easier to reference and means

users need not to worry about getting a null exception when

using the property. Here, we want to return an empty string

instead of null when looking for an abstract for which there is

no corresponding name.

string GetAbstractByTitle(string title)

ensure: (_result!= null)

on failure: _result = "";

Alternatively, another possibility would be to return „„title

not found‟‟ instead of null when looking for an abstract for

which there is no corresponding name.

string GetAbstractByTitle(string title)

ensure: (_result!= null)

on failure: _result = title + " not found";

D. Setting QoS features

Let us suppose we want to add some QoS features to our

system. For example, we want the average response time to be

less than 2.5s, and, we will change the server if the average

response time is greater. Note that the new server can be set

„„ad hoc‟‟ or obtained from an UDDI server or from a list of

servers using the getNewServer function which it will ensure

that the invariant will be satisfied.

As the invariant is always verified before and after a service

is called and the AverageRespondTime tells the average time

taken by the call it is possible to set the following invariant for

the connector.

invariant: AverageResponseTime()<2.5

on failure: ConnectTo(getNewServer())

E. Run-time adaptation

Suppose the server managed by the connector has been

changed by a ConnectTo function or it has been changed or

updated by another team. The original server used only one call

(SendPaper) for sending a paper and its abstract.

However, this new server needs two calls for sending a

paper. First, the abstract must be sent (SendAbstract) and later

the paper must be sent (SendPaperText). This adaptation is

done automatically by the connector, as can be seen in the

sequence diagram shown in Figure 2, using the information in

the ontology which in effect means that the composition of

SendAbstract and SendPaperText is equivalent to SendPaper.

This information is translated to a Prolog clause as follows:

equivalentProperty(sendPaper,

 composition([sendAbstract, sendPaperText])).

This way, the connector (using the knowledge enclosed in

the ontology and a Prolog engine) will unify the call to the

service SendPaper with the composition of the calls

SendAbstract and SendPaperText doing the adaptation.

Figure 2. Adaptation sequence diagram.

IV. IMPLEMENTATION

Connectors follow the reflective middleware model [4]. In

the reflective model, middleware is implemented as a collection

of components that can be configured and reconfigured by the

application. The middleware interface remains unchanged and

may support applications developed for traditional middleware.

In addition, system and application code may inspect the

internal configuration of the middleware and, if needed,

reconfigure it to adapt to changes in the environment through

metainterfaces. In this manner; it is possible to select

networking protocols, security policies, encoding algorithms,

and various other mechanisms to optimize system performance

for specific and often unpredictable contexts and situations.

Connectors are implemented as Web Services where

external dependencies are references to remote components that

are created when the connector is instantiated and they remain

active while the connector is active. Every connector extends

the CConnector class (Figure 3) that manages the predefined

behavior s, the contracts and the adaptation process.

Figure 3. CConector class diagram.

Below some implementation details will be shown using the

previous example. First, when the invariant is defined, a

method for the invariant and on_failure_invariant are generated

overriding the predefined invariant and on_failure_invariant

implemented in the CConnector class:

This is the method which implements the invariant.

public override bool invariant()

{

bool res;

res=AverageResponseTime()<2.5;

return res;

}

This method implements what must be done when the

invariant fails.

public override void on_failure_invariant()

{

ConnectTo(getNewServer("invariant",null));

}

In all, five methods are generated (precondition,

postcondition, service, on_failure_precondition and

on_failure_postcondition) for each service in the server. Below

we show some of the methods generated for the SendPaper and

GetPaperById services:

SendPaper service (as every call to a service) is managed

by the method doCall implemented in the CConnector class.

[WebMethod]

public void SendPaper(string user, int id, string text)

{ object[] parameters = new object[3];

parameters[0] = user;

parameters[1] = id;

parameters[2] = text;

this.doCall(server,"SendPaper",parameters);

}

The SendPaper precondition (as every precondition) is

generated as a bool method.

public bool SendPaper_precondition(string user, int id,

string text)

{ bool res;

res = Registered(user);

return res;

}

The SendPaper on failure behavior is generated as a void

method which calls the Register service and then it calls the

predefined Suspend behavior which is implemented by the

private object beh declared in the CConnector class.

public void SendPaper_on_failure_precondition(

string user, int id, string text)

{ object[] parameters = new object[3];

parameters[0] = user;

parameters[1] = id;

parameters[2] = text;

Register(user);

beh.Suspend(this,Thread.CurrentThread,

this.GetType().GetMethod(

"SendPaper_precondition"), parameters);

}

The GetPaperById on failure behavior is generated as a

void method which assigns as its returning value the call to the

GetAbstractById service and calls the predefined Ignore

behavior to ignore the current call to GetPaperById.

public void GetPaperById_on_failure_precondition(

string user, int id)

{

object[] parameters = new object[2];

parameters[0] = user;

parameters[1] = id;

_result = GetAbstractById(id);

Ignore();

}

As mentioned before, every service is managed by the

doCall method implemented in the CConnector class. This

method implements the activity model shown in Figure 1. It

checks the invariant, precondition and postcondition and calls

its corresponding on_failure method when any of them fails. In

addition, it measures the time to complete a service which will

be used for the AverageResponseTime implementation. This

method calls to the adapt method which will adapt the service

request when it is necessary. In the following we show the

doCall implementation.

public object doCall(object server, string serviceName,

object[] parameters)

{

// 1

Stopwatch time = new Stopwatch();

Type remoteType = server.GetType();

Type connectorType = this.GetType();

MethodInfo remoterService =

remoteType.GetMethod(serviceName);

MethodInfo preService =

connectorType.GetMethod(serviceName+

"_precondition");

MethodInfo postService =

connectorType.GetMethod(serviceName+

"_postcondition");

MethodInfo on_failure_pre =

connectorType.GetMethod(serviceName+

"_on_failure_precondition");

MethodInfo on_failure_post=

connectorType.GetMethod(serviceName+

"_on_failure_postcondition");

// 2

ignore = false;

if (!invariant()) on_failure_invariant();

if (!(bool)preService.Invoke(this,parameters))

on_failure_pre.Invoke(this,parameters);

if (!ignore)

{

if (availableFlag) Monitor.Enter(server);

time.Start();

_result = adapt(server,remoterService,

serviceName,parameters);

time.Stop();

++numCalls;

totalTime+ =(time.Elapsed.Hours*3600.0

+ time.Elapsed.Minutes*60.0

+ time.Elapsed.Seconds

+ time.Elapsed.Milliseconds /1000.0);

if (availableFlag) Monitor.Exit(server);

}

if (!(bool)postService.Invoke(this,parameters))

on_failure_post.Invoke(this,parameters);

if (!invariant()) on_failure_invariant();

// 3

beh.wake_up();

return _result;

}

In 1 the service and the methods that implement contracts

and on failure blocks are built by reflection. In addition, a

Stopwatch variable is created for time measurement.

In 2 the contracts are checked. Then, if the call is not to be

ignored (the ignore flag is set by the Ignore() predefined

function), it is invoked through the adapt method and the time

taken is added to the totalTime and the number of calls served

is increased. This will be used to calculate the

AverageResponseTime as the sum of the time taken for all the

requests (totalTime) divided by the number of calls served

(numCalls). Note that the adaptation time (when it is necessary)

will be added to the total time.

In 3, the local object beh that manages the predefined

behavior s calls to the wake_up() method to wake up the oldest

call suspended that verifies its precondition.

The adapt method (as can be seen in Figure 4) tries to call

the requested service and when the call fails it gets by

reflection all the services provided by the server and uses a

Prolog engine to unify the request and the services offered

using the semantic information contained in the ontology which

has been translated to Prolog clauses.

Figure 4. Adaptation model activity diagram

In the following we show a bit of its implementation.

public object adapt(object server, MethodInfo service,

string serviceName, object[]param)

{ //1

try{ return service.Invoke(server,param);}

catch (Exception)

{ . . .

//2

 foreach (MethodInfo m in serverType.GetMethods())

 {

 PrologInterface sharp = new PrologInterface();

 sharp.AddAssembly(System.Reflection.Assembly.

 GetExecutingAssembly());

. . .

 sharp.SetPredicate(new Can_Be_Replaced_6

 (C, S1, P1, C, S2, P2, new ReturnCs(sharp)));

 ok = sharp.Call();

//3

 if (ok) return m.Invoke(server,

 adapt_param(param, typeParam2));

 }

}

return null;

}

In 1 the method tries to invoke the service normally.

In 2 the method gets all the methods provided by the server

and looks for a method in the server that can replace the service

requested using the rules described before.

In 3 when the service requested can be replaced by the

service m, then it is invoked and its result is returned. Data

conversion problems are solved by the traslateType function

(its activity diagram model can be seen in Figure 5) which is

called by adapt_param.

Figure 5. Data conversion model activity diagram.

V. CONCLUSIONS AND FUTURE WORK

Predictability and correctness are two key properties once

the connectivity between services has been established. On the

extremes, we find pure connectivity (WSDL) and pure

implementation (BPEL). We need a model capable of

specifying behavior of services and automatic verification of

the crucial properties of their composition.

The work presented in this article deals with the need to

specify the behavior of services, QoS and self-adaptation

properties in Web Service based systems. Two main

contributions have been provided in this article. One is the

approach to managing architectural self-adaptation in the

connectors (middleware level) using the knowledge of the

domain (OWL ontologies). The other contribution is based on

the idea that it is the client of a Web Service who sets the non-

functional behavior s and QoS properties increasing the

possibility of component reuse. This work improves the

previous one [5] by providing a development methodology

associated to connectors, supporting QoS, presenting new

predefined primitives and improving the adaptive features of

connectors.

Some benchmark test was done in order to evaluate the cost

of connector adaptation and data type conversion. The test is

based on the implementation of two Web Services offering two

services each one. The first Web Service (WS1) offers one

service that returns an array of 100 elements of type C1 (read)

and the other one receives a class C1 element as parameter

(write). The second Web Service (WS2) has the same

functionality, however, the reading service has a different name

(declared as equivalent in the ontology) and the elements

read/written are from the class C2 (declared as equivalent in the

ontology). It has been done 10, 100, 1000 and 10 000 calls.

Table 1 shows the average, variance, standard deviation,

maximum and minimum time (in milliseconds) for one call in

the 10 000 calls test.

TABLE I. BENCHMARK TEST. TIME IN MILLISECONDS.

10 000 calls done Avg. Var S. dev. Max. Min.

WS1 reads 100 records 3.79 76.56 8.75 312.50 0.00

WS1 write 1 record 3.22 57.13 7.56 187.50 0.00

cnt-WS1 reads 100 records 9.56 109.90 10.48 296.88 0.00

cnt-WS1 writes 1 record 6.90 140.43 11.85 359.38 0.00

cnt-WS2 reads 100 records 9.60 114.54 10.70 328.13 0.00

cnt-WS2 writes 1 record 6.67 95.96 9.80 234.38 0.00

As computing time and networking time can be considered

as constant, it can be seen in Table 1 that in the worst case (it

was necessary to adapt the name of the service, the type of the

returning value and translate one array of 100 elements of type

C1 to one array of 100 elements of type C2) the average time

was increased only in 6ms what it is acceptable for non real-

time systems.

As future work we will attempt to increase the number of

predefined function in order to express more QoS properties

(average time required to perform a service, average time to

adapt a service, throughput, bandwidth, etc.) and to improve the

connector generator (making it more user friendly). In addition,

we intend to include in the framework a set of already

developed connectors implementing QoS and synchronization

patterns that can be used to generate new domain specific

connectors.

REFERENCES

[1] Camara J, Canal C, Sala ¨un G. Behavioural self-adaptation of services

in ubiquitous computing environments. In: Proceeding of ICSE

workshop on software engineering for adaptive and self-managing
systems, 2009. p. 28–37.

[2] Cheng BHC, et al. Software engineering for self-adaptive systems,

URL:http://drops.dagstuhl.de/volltexte/2008/1501/pdf/08031_abstractsc
ollection.1501.pdfS

[3] Fowler M. Refactoring. Improving the design of existing code. Addison-
Wesley; 1999.

[4] Kon F, Costa F, Blair G, Campbell RH. The case for reflective

middleware. Communications of the ACM. Special Issue: Adaptive
Middleware 2002;45:33–8..

[5] Pastrana JL, Pimentel E, Katrib M. Composition of self-adapting
components for customizable systems. The Computer Journal

2008;51:481–96.

