
A Design Pattern Language for Oldschool Action Games

Daniel CERMAK-SASSENRATH
Interdisciplinary Unit, Faculty of Design & Creative Technologies

Auckland University of Technology
Auckland, New Zealand

ABSTRACT

This article discusses the application of an Alexandrian pattern
language to the design of interactive systems. It grew out of an
University course titled A Pattern Approach to Action Game
Design, which was offered as an elective in the Creative
Technologies program at Auckland University of Technology,
NZ, in 2011. We sketch out the idea of design patterns and
describe our experiences with the process of using them for
designing oldschool action games, that is, finding patterns,
making a language, using it for creating several game designs
and realizing one of these designs collaboratively. We discuss
the concept of the course and present our pattern language and
the game we made. While the language is arguably more like a
patchy pattern collection, the various game designs quite loose
and the realized game unfinished, the process was challenging
and intense, and offered students a new perspective on design.
In the spirit of design patterns, we only did what the task at
hand required, not artificial exercises. We attempted to connect
theory and practice in a natural, direct way as we presented,
discussed and used everything we did in order to continue our
journey. Our course was not aimed at fixed or frozen products,
but on a process that is constantly in flux through collaboration
by people who interact and share a common pattern language,
use, test, revise and refine it while moving on.

Keywords: Pattern design, Methodology, Game Design and
Teaching.

INTRODUCTION

Media, artifacts and processes of any complexity are structured
by patterns. This observation was the starting point for our
course on design patterns. In the course we explored how
patterns can be used generatively to inform creative processes
for the design of interactive systems: Design patterns “are
dynamic. They have force. They are generative.” [3]

While Alexander created his pattern language for the domain of
architecture ([3], [2], [1]), we aimed at computer action games.
The focus was on game play, not on e.g. graphics, physics or
coding. We analyzed classic 8-bit and 16-bit computer games,
mostly C64 and Amiga games as a large number of these is
readily available through emulators (VICE for C64 on Mac,
WinUAE and WinFellow for Amiga on PC). The patterns are
also identical in old and new action games, it appears, but the
patterns are easier to spot in games that are technically limited
to the essentials (i.e. interaction), than in the latest quite
elaborate and complex games. We limited the scope of our
approach to certain types of action games, and we chose to

include jump n’ run (e.g. Mario, Great Giana Sisters), shoot
‘em up (Xenon 2, R-Type) and maze games (Gauntlet), but
excluded sports (Kick Off, Projectile, Speedball), race (Super
Cars), karate (IK+) and sniper games (Cabal).

The concept of Alexandrian design patterns has been applied to
a range of different domains. They also have already been
applied to interaction and game design (e.g. [13], [7], [6], [9],
[4], [10], [11], [12]). We could have used (part of) an existing
language for computer game design [5] but we preferred to
attempt to cover the whole process of finding patterns,
formulating a language and using it ourselves. This was done to
create a more engaging and challenging situation to learn, to
facilitate understanding of the theory, and also to strengthen the
feeling of identification with what we do with a sense of
discovery. While risking making a pattern collection instead of
a complete language and not reaching a very high grade of
abstraction or depth, we valued the process more than the
product.

THE IDEA OF DESIGN PATTERNS

Following Alexander [3], patterns are seen here as rules of
thumb. For instance, when making a barn, build it “in the shape
of a rectangle, 30–55 feet wide, 40–250 feet long, the length at
least 3x feet, where x is the number of cows the barn has to
hold.” Include a wide double door for the hay wagon. “Devide
the inside of the barn into three parallel aisles: two cow milking
aisles down the outer sides, and a central hay-storage aisle
[etc.].” While there are myriads of variants and there is constant
flux in all systems, they retain a certain kind of invariant
“character, a ‘thing,’ a ‘structure,’ which remains the same”.
This invariant structure of entities and relations between them is
the area in which design patterns work. They control and
(trans-) form it. In effect, what we call a church is a selection of
patterns in certain relationships with each other.

A pattern language is an explicit way of notation for design
principles. Patterns attempt to express invariant concepts which
apply to specific problems in certain situations. They try to
“relate [...] context, problem, and solution, in an unchanging
way”. Each pattern is formulated as a “three-part rule [...]
which establishes a relationship between a context, a system of
forces which arises in that context, and a configuration which
allows these forces to resolve themselves in that context”.

Patterns are basic, deep, potent, simple, ordinary and easy to
understand; they are not mysterious or complicated or to be
used only by specialists. Every pattern “is so concrete, so
clearly expressed as a rule, and as a thing, that anyone can make

one, or conceive one, in the buildings where he lives, or in a
building which is going to be created.” It takes only little time
to “design a building in this way. [...] The speed is the essence.
It takes time to learn the language. But it takes no more than a
few hours or days to design a house.” The power to create “lies
[...] in the simple mastery of the steps in the process, and in the
definition of these steps.” But when selections of these simple
elements are combined and integrated, they “generat[e] an
entirely unpredictable system of new and unforeseen
relationships” and complex systems.

We are always dealing with a system of patterns; “patterns are
not isolated” but “interdependent, at many levels”. Patterns
interact with each other, in a system of relationships. “Each
[pattern] is incomplete, and needs the context of the others, to
make sense.” Large patterns give small patterns a place and put
them in a certain relation to the whole, and the small patterns
realize, facilitate and support the large patterns.

The realisation of patterns depends on the given context.
Patterns are relations of relations in many variations; they are
not just physical parts, stackable objects or building blocks
which are repeated identically. Patterns need to be fitted to
specific settings for best results. A system which is alive or
anything beautiful cannot be made “merely by combining fixed
components” or “by adding preformed parts”. It can only be
generated by a process in which “each part is modified by its
position in the whole”, and is “different every time [it]
occur[s]”. While each realisation is uniquely tailored to a
specific situation, “[t]he patterns repeat themselves because,
under a given set of circumstances, there are always certain
fields of relationships which are most nearly well adapted to the
forces which exist.” The focus on situated activity and the
appropriation of specific settings and adaption to certain
situations and circumstances, and the unity of action and space
appear to point to parallels in phenomenology (e.g. [14]).

The process of adaption to specific local circumstances also
favors a wholistic approach of planning and making, giving up
the division of mind and matter. It attempts to connect
reasoning and acting in a natural way. Planning informs the
making and the practice feeds back into the planning. “The
person who draws a working drawing cannot draw each
window, or each brick, differently, because he has no basis for
knowing the subtle differences which will be required. These
only become clear when the actual building process is already
under way.” [3] A design can be created on location, as close as
we can get to the actual situation and to the shared, collectively
experience.

When creating a design using a pattern language, every single
pattern is to be made as intense as possible. “There is no reason
to be timid.” This process is not about compromise but about
creating one strong pattern at a time and relate it to all the other
patterns that are already in place in the system, to “go all the
way with it”. Multiple patterns in one place take not away from
each other but complement, enrich and balance each other.

The act of putting a pattern into a system is an act of
integration, not addition; it is a fluid process, in which each
pattern has the power to “transform [...] the whole design
created by the previous patterns”. Patterns “are not parts, which
can be added – but relationships, which get imposed upon the
previous ones, in order to make more detail, more structure, and
more substance”. This is obvious in game design; a single
feature transforms the whole game. The parts the design is

composed of “overlap and interlock to such an extent that the
oneness of all things becomes more marked”. The whole design
is transformed with each new pattern which is introduced, and,
in turn, each new pattern is also transformed by the patterns and
the structure which is already is place. The observation that
every act is to be seen in relation to what has already happened
connects to Heidegger’s notions that acting comes first, and of
being thrown into the world, and not being able to step back.

The concept of design patterns sees design as a process in which
the whole precedes the parts. The design stays whole during the
entire process, while it is being differentiated, or rather, while
the patterns in it differentiate themselves. While keeping the
system whole in this process, “structure is injected into the
whole by operating on the whole and crinkling it, not by adding
little parts to one another.” The design starts and develops as a
single entity. “The form of the whole, and the parts, come into
being simultaniously.”

The process of using design patterns for building has been
discussed for making new buildings so far. But “there is a
second, complementary process which produces the same
results, but works piecemeal, instead. When a place grows, and
things are added to it, gradually, [...] the gaps are filled, the
small things that are wrong are gradually corrected, and finally,
the whole is so smooth and relaxed, that it will seem as though
it had been there forever.” This process is the same process at
work as before, when making something new, but “stretched out
in time”.

A pattern language is to be “morphologically and functionally
complete” for a specific task (e.g. building, blues music [6]). “It
is morphologically complete, when the patterns together form a
complete structure, filled out in all its details, with no gaps. And
it is functionally complete when the system of patterns has that
peculiar self-consistency in which the patterns, as a system,
generate only those forces which they themselves resolve – so
that the system as a whole, can live, without the action of self-
destroying inner conflicts.” [3] In creating a design, you then
only need to follow (invariant) internal requirements and logic,
not (changing) outward and external images, trends, styles or
pressure. You can let go of your control over the design and “let
the pattern[s] do the work.” In this process nothing is to be
added “except just what the patterns demand”. This brings out
the “natural, necessary order of a thing”. If we already have all
the answers before we start our work we cannot listen to what
the design asks for. We “must start with nothing in [our]
mind[s]”, and be “comfortable with the void, [...] confident that
the laws of nature, formulated as patterns, [...] will together
create all that is required.” Such a system which follows internal
rules only is free from contradictions that weaken it; it can be
pure and strong and true because it is at peace with itself, “in
tune with its own inner forces”.

A town or a neighborhood is always in flux, constantly
changing, not a finished or frozen product. Even more, “[t]here
is no product [...]: the building and the town, which live, are that
incessant flux, which, guided by its language, constantly creates
itself.” (emph. added) Such systems are alive because they are
tested and refined in use.

People can make, adapt and share pattern languages “for any
building task [they] face.” Anybody “with a pattern language
can design any part of the environment” and is entitled to do so,
as “it is essential that the people do shape their surroundings
for themselves” because they as users know best: “[W]indows

must be shaped by people who are looking out”. Large systems
as towns are made up of “millions upon millions of these tiny
acts, each one in the hands of the person who knows it best, best
able to adapt it to the local circumstances.” This applies to
large systems and small: “Each detail has meaning. Each detail
is understood. Each detail is based on some person’s
experience, and gets shaped right, because it is slowly thought
out, and deeply felt.”

A pattern language arguably provides a group a people with a
means of effectively communicating, “almost as if they had a
single mind” to collaboratively make a whole, single and
integrated structure because, “with a [pattern] language, the
assumptions are almost completely explicit from the start”.
Patterns invite discussion, because they “are not fragile – they
are as solid that they can be talked about, expressed quite
clearly”, challenged and questioned. A pattern like the
ENTRANCE TRANSITION [2] “can be shared, precisely because it is
open to debate, and tentative.” [3] But using patterns is not a
mechanical process, guaranteeing anything or a magic bullet for
success. “Pattern languages are the source of beauty and of
ugliness.” The patterns are only as capable as the people who
use them.

To test a system or pattern, Alexander argues for querying and
trusting people’s feelings as humans and users, and not for
asking experts’ opinions or blindly following fashions.
Everybody involved in the process of design “can decide for
himself whether [a pattern] is true, and when, and when not, to
include it in his world.” To judge a pattern he suggests to go to
a town, building or place, where the pattern in question is
implemented, “and [to] see how [we] feel there”, to ask why we
like something or not, and to try to identify and isolate the the
core of this experience. This will accurately tell us all we need
to know about the pattern. This is not asking for our opinions or
tastes but purely for feelings. Alexander claims a very high rate
of agreement in the cases he did this experiment with the
WINDOW PLACE pattern.

Using patterns is not teaching us anything new. But “they only
remind us of what we know already”, in our hearts, “old
feelings”, what we have forgotten and cannot access. A
“[pattern] language, and the processes which stem from it,
merely release the fundamental order which is native to us.” It
helps us “to come more into touch with the simple reality of
things, and thereby become egoless and free” and “to be
[ourselves]”, to “act as nature does”. Using patterns is not a goal
in itself, and patterns are not cooking recipes, that can or should
be followed to the letter; they are concepts, that need to be
applied in the spirit in which they were conceived. When we
have rediscovered the process which lets us get in touch with
our ordinary, deep and “innermost feelings”, the use of pattern
languages has reached its end.

THE CONCEPT OF THE COURSE

The concept of the course was centered around the idea of
combining theory and practice in a natural way. The practical
work should be carried by theory, and the discussion of theory
should be informed by practical experiences. Exercises should
not be artificial or detached from the design process, but
everything we do should be presented and discussed, and feed
into the next step of the process. All participants work
collaboratively on a whole range of tasks differing in scope,
difficulty and priority. This provides ways of engaging

everybody, giving all participants ample opportunity to identify
with the process and to make it their own project. Everybody
can discover what he/she can contribute, and try out new things,
learn, take risks. The participants were aware that a course like
this can quite easily go wrong; it was conceived as an
exploration into the unknown, and this definitely added a sense
of discovery, surprise and thrill.

While the teaching time was formally devided into lectures,
tutorials and lab sessions, in practice, the distinctions were
fluent. In the lectures, theory, examples and our experiences
were discussed, and students presented the results of the
exercises. The theory was mainly focussed on Alexander’s
Timeless Way and A Pattern Language, but we also looked at,
for instance, Borchers’ example of a pattern language for blues
music. A number of articles on game design patterns were also
referred to.

The collective work in the lab included playing classic games
with emulators, finding patterns, creating our own game
designs, coding and testing. We started by implementing our
own Pong and Tron versions (Figure 1) to get going. Usually,
we would start to work together on an exercise right after the
lecture. This should provide an immediate positive hands-on
experience. It makes people feel part of the process and helps to
reduce both the distances between the topics of the lecture and
the own work, and between the participants. It also helps to
reduce the amount of time before people actually start to
engage. The practical work should trigger the need for theory,
create questions, and offer experiences that can be discussed in
the lecture. This makes the theory appear less artificial and give
the practice background and value, and also provides it with
reasons and goals. We favored group work over individual work
to not only to make people collaborate with and motivate each
other, but also learn from one another and challenge each
other’s ideas.

	
 	

Figure 1: Boxing cavemen Pong and diagonal 4-player Tron

There were ten theoretical and practical exercises, nine of which
had to be done to pass the paper. Some of the exercises were to
be done individually, the rest in 3-person teams. Part of most
exercises was a presentation in class and a hand-in (i.e. a pdf or
source code). Usually, the topics of the lectures trailed the
exercises by one week to enable students to first make their own
experiences to which they then could relate when discussing
theory in the lecture. The paper relied heavily on students’
participation, so expectations in this department were high.

DISCUSSION

At the end of the semester, students were invited to give verbal
feedback about their experiences and opinions on the use of
design patterns. Additionally, views expressed in the final
excercise, the reflective statement, are collected here. Students
commented on different aspects of pattern design, some specific

to our course, some quite general. The discussion of how the
concept of the course worked in practice is centered around the
idea of creative and generative use of design patterns, not on
everyday teaching and learning issues.

Students found the process of playing classic action games,
looking for patterns and identifying their essential properties
enjoyable and rewarding. It provided them with a sense of
discovery and ownership. Many people said it opened their eyes
to the concept of patterns. “[...] I thought it was going to be
difficult to find the patterns. Instead, I found that once I started
looking for the patterns, they were absolutely everywhere.”
(Reflective Statement) Students also commented that this was
the point they began to understand what we were talking about
in the lecture. “Much of the class came up with similar patterns
so we classified them and worked towards building a final
pattern language. This helped us all tune in with each other on
what a pattern language actually was and how things should be
categorised. It worked well.” The lecture clearly benefitted from
this experience. We used a free real-time multiuser online text
editor [8] for working on the pattern language. This facilitated a
feeling of an onging process among the participants, because
everybody could always access the latest version of our pattern
language, use and change it. “With the online collaboration tool
Etherpad we were able to alter and read the document in real
time as edits were being made, and see the formation of a
document. We were able to influence each other and be
influenced as the document took shape.” We were constantly on
the move on this trip.

Students enjoyed creating their own game designs. At that
point, our pattern language was still very loose, and a number of
patterns were certainly added to the designs as afterthoughts.
Nevertheless, people were aware of patterns, and used them to
some degree. And it was fun. “The most interesting part was
when we all had to come up a game design idea to present for
an action game.” Several game designs were created, presented
and discussed. All the game designs were for jump n’ run
games, which was surprising; apparently Xenon-style shoot ‘em
up and Gauntlet-style maze games are out of fashion at the
moment. There were no really radical designs, but more detail
tweaking, copying popular games, some transformation and
sadly no multiplayer. Among the game designs were Dragon
Eggs, a Mario-esk “Action Platformer” (Game Design
Document) with “Medieval and Fantasy themes”; Radical
Hamster Force, “Kind of like a mix of Alex the kid, Mario, and
Kirby combined but with optional weapons”; Krystal in the
Hood, a “classic platform game” in which the player has to
“move from left to right and from top to bottom” through
multiple levels; and the later realized Super Bush! Chronicles.
We voted for one of these game designs to be realized and
integrated features (i.e. patterns) from the other designs. The
voting was appreciated, and taken quite seriously.

The single most successful aspect of using patterns was
arguably their benefits for group work. “Everyone managed to
work together in teams and made the best out of their abilities to
achieve the game”. The use of patterns helped quite a
heterogeneous group of more than ten people to identify and
actively engage with a single project, and facilitated
collaborative decision-making in our numerous meetings.
Contributions could be were very specific and to the point, e.g.
in discussing the game designs. “I don’t think it would have
been a bad or significantly different game if we hadn’t taken the
process of developing and deciding on patterns prior to writing

up a game design document. But it helped the process and I
think it allowed for a more concrete development of the project.
Using patterns you know what you want, then design around
that idea.” Students came to see patterns as an interesting design
methodology. They described them to be a very useful tool, a
“powerful [...] development technique”.

However, while patterns seemed to work well for creating game
designs, it was different during the implementation phase in
which “getting the game working became the focus instead.”
Students remarked that implementing the game simply had not
much to do with the idea of using patterns. “The [pattern]
language helped the game designers to not miss important parts
of a game out and to think about how parts interacted. From
there however, we stopped thinking about patterns.” Coding
C++ proved to be hard as most people were inexperienced
coders. Getting the basic functionality right was challenging
enough, and possibly hindered access to the process on a higher,
more abstract and interesting level. “While [C++ is] fast and
powerful there are certain low level elements that one cannot
avoid using.” Trying to get e.g. the sound working “was a waste
of time that I didn”t have to waste.” Students suggested using a
game engine instead. An advantage was that everybody working
on the code knew what, why and when something needed to
happen, which was very helpful for collaboration. “Whoa, I
thought, that’s an interesting approach.” People could be quite
specific about what they wanted to do, and what they wanted
other people to do. “At first I thought that the patterns weren’t
going to be necessary, but as we progressed I found them to be
quite essential in terms of laying out the game – because we
knew what we wanted, where to implement it, how it worked
and it was all written down and discussed with the group.”
Despite the difficulties, people commented that making the
game was a fun and very intense experience, and that it felt
quite magic to see how the patterns came to life.

Some students felt that patterns “restricted [their] creative
freedom”. As this was our first use of patterns, the process may
have been quite mechanical, and not as fluent, spontaneous and
radical as it could be. “The world is chaos and unorganized,
putting everything into an organized list makes life boring and
ends opportunity for innovation and creative thinking.” Our
language was not very deep and powerful. “[...] I feel my
common sense and knowledge of how games work being much
more helpful to me than using a set of rules. Creative decisions
yielded better results and just experimenting until it feels right”.
While the question of creativity and patterns was addressed in
one of the lectures, it was apparently not discussed clearly
enough. Patterns have nothing to do with “what I would call
cloning”, and a person using a pattern language is certainly not
“playing it safe”. Patterns are not only for people who “can’t or
don’t need to think creatively”. Of course, there is some truth to
the matter. Patterns need a closed system to work, e.g. an
engineering problem to solve. It would appear absurd to have a
pattern language for creating art, for example.

Initially, people were sceptic of the generative force of patterns.
“How could that possibly work? Sure, it was fascinating to look
at already completed games and see how they could be broken
down into patterns, but I didn’t completely believe that the
reverse could be done – taking patterns and creating a game
from them.” During the semester, students were questioning the
idea of letting go and not trying to control the whole design top-
down. They were surprised by the drive and the immediacy with
which patterns asked for action. “[...] honestly I didn’t feel like

it was going to work. I thought that something bad was going to
happen that would stop the progress of the project and slow it
down for everyone [...] but fortunately I was mistaken.”

AN ACTION GAME DESIGN PATTERN LANGUAGE

In our course, we created a pattern language for action games,
i.e. jump n’ run, shoot ‘em up and maze games. Excluded are,
although these are arguably also action games, sports, race,
karate one-on-one and sniper games. Our patterns roughly
follow the format of Alexanderian patterns. Each one has a
name, a certain context or situation, a short description, and is
connected to larger patterns (above) and smaller patterns
(below). In many cases examples of an occurance of a particular
pattern in a game are given. All participants worked
collaboratively on this language. They wrote, edited, moved,
revised and deleted patterns. While a number of patterns was
identified and described, the result is more like a collection than
a complete language. The overall number of these patterns still
needs to be reduced, the hierarchy needs to be revised, and
patterns need to be linked and related to each other.

The titles of our patterns are IN-GAME OBJECTIVES, MORALITY,
SOMETHING TO DO FOR THE PLAYER, ACTION CONSEQUENCES,
REWARD FOR RISK, CHARACTER, SPECIAL ABILITIES, WEAPONS,
ARMOR, ENEMIES, CIVILIANS, LIMITED LIVES, HEALTH BAR,
MANAGE CHARACTER, POWER-UPS, ITEMS TO COLLECT, SHOP, A
SETTING FOR THE GAME, LEVEL THEMES, SECRETS, HIDDEN
CHAMBERS, INVISIBLE GOODIES, SHORTCUTS, CHEATS, TRAP,
COMPETITION BETWEEN PLAYERS, QUICK MOVEMENT, LINEAR
FLOWING GAMEPLAY, EVERCHANGING ENVIRONMENTS, and GAME
GETS HARDER. Because the pattern collection is too large to be
included here completely, three example patterns of different
abstraction are given.

REWARD FOR RISK
One of the most common patterns in action games is REWARD
FOR RISK. It differs from most other patterns in that it is an
abstract pattern – it describes a style of gameplay rather than an
actual object in the game.
Why is REWARD FOR RISK such a useful pattern to implement in
action games? Because it creates a psychological hook for the
player. The human brain is wired so that if we successfully
complete something risky, we get rewarded with a short burst of
positive endorphins, along with an immense feeling of relief
and satisfaction. Very quickly, the player gets addicted to this
short emotional high, and is willing to invest significant time in
a game to experience it. While this pattern is characteristic of
the gambling genre, it is also an essential pattern for Action
games as it keeps the player engaged with the game.
Examples of the REWARD FOR RISK pattern include: Having to
risk your life against a difficult boss to beat a level, being able
to cross a dangerous lava pit with the potential reward of an
extra life and fighting more challenging monsters to get better
loot.
The risk is something that has to be balanced carefully if the
reward is critical to the main gameplay; if a game is too hard to
complete then players will rage quit. If a game is too easy then
players will get bored. However, if the reward is something that
the player does not necessarily need to finish the game, then the
risk can be as high as you want.
Goes with patterns: ENEMIES, TRAP, INVISIBLE GOODIES, SECRETS

SHOP
In a game with many different enemies and/or levels, it might
be interesting to offer the player the possibility to decide about
what weapons he wants to have. Players can buy and sell
weapons and other equipment, and if the prices vary between
shops, they can even trade with them. Shops might be localized,
e.g. vary in offer and price. Shops can be located anywhere in a
level, but most commonly between levels or at the halfway
point.
Most shops in games of this type contain a very basic interface.
There is usually a basic, easy-to-navigate scrollable item menu
– either filling the screen, or over a graphic depicting a shop
counter. Sometimes, however, a shop will only appear as an
options screen or dialog box after a particular action has been
completed, asking you whether or not you want to buy or
upgrade something. Upgrades to weapons, armour or vehicles
are usually available, and better enhancements cost more. Other
items that can often be bought from game shops include
ammunition, damage boosters, and health items. Items from the
shop are usually paid for with items collected in levels, or using
an in-game currency that collectables or score can be exchanged
for.
Therefore: Put a SHOP into your game when you want to add an
element of strategy to the action game, and give the player
control over his abilities/equipment. Vary offer and price
between shops to enable trade. Place them at the end of levels or
at the half-way point.
Goes with patterns: ITEMS TO COLLECT, POWER-UPS, WEAPONS,
ARMOUR, SPECIAL ABILITIES
Examples: Xenon 2, River City Ransom

TRAP
Is part of the patterns: SECRETs
In addition to enemies, traps can be dangerous to players. They
can be easy to see or hidden. There are many different types of
traps. Most traps are part of the level and cannot be defeated or
destroyed, simply avoided.
Put TRAPs in your game to add a sense of discovery to it.
Players will then carefully observe every detail in your level
design. Traps should be visible (as in Rick Dangerous), and not
only be found by trial-and-error (as in Lost Vikings). Traps can
also be dangerous for enemies, therefore enabling the player to
use them for his advantage, adding a twist to the game beyond
shooting at everything that moves. There should be a reason for
the trap, and a payoff for defeating it, e.g. a bonus.
Goes with patterns: ENEMIES, REWARD FOR RISK
Examples: Rick Dangerous, Lost Vikings

ACTION GAME: SUPER BUSH! CHRONICLES

Super Bush! Chronicles (Figures 2 and 3) is a single-player
jump n’ run game. It is about a panda bear defending its jungle
against fierce goblins who want to build a town at this location
to “support their gambling needs” (Design Document). The
game includes a number of patterns from our pattern language:
SOMETHING TO DO FOR THE PLAYER, ACTION CONSEQUENCES, IN-
GAME OBJECTIVES, REWARD FOR RISK (score, goodies),
CHARACTER (panda bear), MORALITY (helping a good cause,
defending the forest, liberating caged jungle animals), SPECIAL
ABILITIES (jumping very high and bamboo stick kendo, eat
weapon upgrades (bamboo stick) to boost health), ENEMIES
(goblins with axes, chainsaws or guns, boss goblins in
construction vehicles, i.e. bulldozers), LIMITED LIVES (three),
HEALTH BAR (for player and goblins), MANAGE CHARACTER,

ITEMS TO COLLECT (nuts as currency), SHOP (buy armour and
weapon upgrades), COMPETITION BETWEEN PLAYERS (through
saved hiscores), GAME GETS HARDER (increasing number of
enemies and traps), TRAPs, A SETTING FOR THE GAME (conflict
over natural resources) and LEVEL THEMES (five levels with
slightly different themes).

	
 	

Figure 2: Super Bush! title screen and in-game screen shot

We recorded our own sound and drew original graphics. The
game is controlled with the keyboard. It was implemented using
C++ and the SDL library. A PC download is available at
www.dace.de.

	
 	

Figure 3: Weapon and armour shop, goblin sprite sheet

CONCLUSION

The course on design patterns was quite ambitious and
challenging. We did not have much time to discuss theory, play
games, find patterns, make a language, use it for designing
action games and realize one of the designs. It was an intense
trip aiming to combine practice and theory, experience and
reflection. The theory was in many cases the subject of the
exercises, or informing the practical work to a considerable
degree. The practical work relied on an understanding of the
theory, in a direct and natural way. We only did what the task at
hand required and followed the internal logic of the process. We
presented, discussed and used everything we did. Everybody
was always aware why he/she was doing something and why
this was necessary. The students were engaged and interested in
the new perspective the concept of patterns could bring to their
practice, and everybody was curious if it would work for us.

Of course, we had some problems that held us back. Most
students were not experienced in game (or interaction) design,
and many were novice coders. Only few had an overview of
classic action games. The students did not have a solid base of
design knowledge that they could apply through the new
perspective of design patterns. In creating and discussing the
game designs, students did not feel the intrinsic necessity to
strictly follow-through with design patterns; this points to our
language being not complete, as new ideas were constantly
suggested at all stages of the design process.

On the other hand, there were solid benefits in using patterns.
The collaboration was working well, and discussions were very

specific and to the point. Students were keen to participate and
many invested a lot of time and energy. Everybody could quite
easily make a relevant contribution, and this got people deeply
involved and interested. Students had the feeling of genuine
discovery and ownership. We did everything by ourselves, and
all of us shared the design and the process. The process of
finding, describing and using patterns could have gone seriously
wrong, and this definitely add some thrill to it. The course was
not over-prepared. We faced real questions, issues and
problems, and needed to find solutions. To include the
possibility of real failure opened up the possibility for real
success.

And it was fun. We gained more from the process than we
invested, it appears. The process developed a kind of
momentum of its own. All participants saw how our various,
loose and general ideas for a game were transformed into a
coherent design, and then, towards the end of the semester, how
the design was turning into a working game, literally in the
course of a few days (and nights). This was a quite impressive
and also a strange experience.

REFERENCES

[1] C. Alexander, M. Silverstein, S. Angel, S. Ishikawa, D.
Abrams, The Oregon Experiment, New York: Oxford
University Press, 1975.

[2] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I.
Fiksdahl-King, S. Angel, A Pattern Language, New
York: Oxford University Press, 1977.

[3] C. Alexander, The Timeless Way of Building, New York:
Oxford University Press, 1979.

[4] S. Björk, S. Lundgren, J. Holopainen, "Game Design
Patterns", Level Up: Digital Games Research
Conference, 2003, pp. 4–6.

[5] S. Björk, J. Holopainen, Patterns in Game Design,
Hingham: Charles River Media, 2005.

[6] J. Borchers, A Pattern Approach to Interaction Design,
Chichester: Wiley, 2001.

[7] D. Church, "Formal Abstract Design Tools", Gamasutra,
July 16, 1999. www.gamasutra.com/view/feature/3357/
formal_abstract_design_tools.php (16/6/2011).

[8] Etherpad, www.ietherpad.com (Nov 4, 2011).
[9] B. Kreimeier, "The Case For Game Design Patterns",

Gamasutra. March 13, 2002. www.gamasutra.com/view/
feature/4261/the_case_for_game_design_patterns.php
(16/6/2011)

[10] B. Kreimeier, "Content Patterns in Game Design", Game
Developers Conference, 2003.

[11] P. Lemay, "Developing a pattern language for flow
experiences in video games", Situated Play, Proc. DiGRA
2007 Conf., 2007, pp. 449–455.

[12] R. Nystrom, Game Programming Patterns / Getting
Started / Introduction. gameprogrammingpatterns.com/
introduction.html. Last modified on July 08, 2010
(2/6/2011).

[13] Z.B. Simpson, "Design Pattern for Computer Games",
Computer Game Developer’s Conference, Austin, TX;
San Jose, CA. Nov 1998, May 1999. www.mine-
control.com/zack/patterns/gamepatterns.html (6/7/2011)

[14] L.A. Suchman, Plans and Situated Actions: The
Problem of Human-Machine Communication,
Cambridge: Cambridge Univ. Press, 1987.

