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ABSTRACT in the absence of a source or sink. In the above equatien,
The problem of mixing enhancement is considered bc(x,t) denotes the concentration of a physical quantity called

tuning finite dimensional flows in an optimal way, which passive scalar’(x) is an initial concentrations: > 0
9 b Y, q%enotes the molecular diffusivity of the scal@ris a bounded

is defined as the linear combination of linearly independen T n 8 S
steady flows. Optimal mixing control problem is formulate omain inR*, 7 denOteS the r_10rmal derivative along the
' oundaryof2 (n denoting the unit normal on the boundary),

by using the flow as control variable. Using variational prin : : o
. . . . v = v(x,t) denotes an incompressible velocity fieM (v =
ciples, we prove the existence of an optimal flow and derive 5 5 52 52
,andV2:W+--~+W.We

an optimality system that consist of nonlinear convectior): Oz1° 7 9z, ? ,

diffusion equations and ordinary differential equatiofishe ~a@ssume that satisfies no-slip boundary conditions on the
initial concentrations are sufficiently small or the difiigy ~ PoundarydQ (v = 0).

is sufficiently large, we prove that the optimal flow is unique N the preliminary study [23], we assumed that an arbitrary
and then synthesize an optimal dynamical state feedbagRsteady flow can be generated. This may not be realistic.

controller following the dynamical programming procedureThus we consider finite dimensional flows given by

m

Keywords: Mixing Enhancement, Optimal Control, B _ _
Convection-Diffusion Equations, Variational Principleda V= ZVZ(X)UZ(t)’ (2)

. . . =1
Finite-Dimensional Flows.
where v;(x) (¢ = 1,---m) are given steady flows and
|. INTRODUCTION u;(t) (i = 1,---m) are weight controls. These steady flows

Mixing enhancement is central to the vast majority ofrescribe how the control action is distributed in the flow
processes in the chemical, pharmaceutical, aeronauwicdl, field. Such finite dimensional flows were suggested in the
hydrocarbon processing industries. Well-mixed chemieal r preliminary study [23] and were studied in [24].
actions can yield substantial product benefits and enhancedFollowing our preliminary study [23], we define mixing
mixing of fuel can optimize combustion chamber. efficiency functionals by penalizing the average of vare&anc

Mixing can be enhanced by destabilizing a flow [4], [12],0f a diffusive scalar and the average of the flow weights.
[13], [14], [15], [17], [27], [30]. The flow can be destabiid Using variational principles, we prove the existence of an
using passive control devices such as the backward faciegtimal flow weight and derive an optimality system that
step [32] and lobed nozzles [8], open-loop active excitetio consists of nonlinear convection-diffusion equations and
through flaps and wall-jets [16], and active feedback cdstroordinary differential equations. Furthermore, we showt tha
[1], [5], [33], [31]. if the initial concentrations are sufficiently small or the

The objective of this paper is to continue the first author'diffusivity is sufficiently large, then the optimal weighs i
work [23] by deriving mathematical criteria for an optimalunique. This uniqueness result enables us to synthesize an
finite dimensional flow for mixing enhancement and provingptimal dynamical state feedback controller following the
the uniqueness of the optimal flow under certain conditionglynamical programming procedure.

which was left as an open problem in [23]. The optimal mixing problem has been studied in the
A simple mathematical mixing model is the convectionliterature. Using the entropy of automorphisms of dynainica
diffusion equation systems as the measure of mixing efficiency, D’Alessandro,
9e Dahleh, and Mezic [2] formulated an optimal mixing prob-
—+(v-V)e = kV? inQ, (1) lem by maximizing the entropy among all permissible pe-
ot 0 : riodic sequences composed of two shear flows orthogonal
cxto) = c(x) i, to each other. They derived the form of the protocol which
9c = 0 ondn maximizes the entropy by developing appropriate ergodic-
on theoretic tools. Another optimal mixing problem was defined
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efficiency and then maximized the flux among all permissible, of the strain tenso¥v, and of the acceleratio%;—’. This
controlled vortex motions. implies that the smaller the weights, the more turbulent the
The paper is organized as follows. We define a mixing effieptimal flow, and then the better the mixing enhancement.
ciency functional in Section Il. We then derive an optimalit There are different measures for mixing efficiency such
system for the optimal flow weight in Section Ill. Usingas Lagrangian and Eulerian time-averages of a flow [3], the
the Banach fixed point theorem of contraction mapping, imixing variance coefficient [7], and the Mix-Norm defined
Section IV, we prove the uniqueness of the optimal flovby Mathew, Mezi¢, and L. Petzold [25]. For the convenience
weight if initial concentrations are sufficiently small dret of treatment of our optimal control problem, we use the
diffusivity is sufficiently large. L, norm of a scalar variance as the mixing efficiency
measurement.

We note that the mean is conserved. In fact, integrating
We need a number of function spaces for our discussionsquation (1) ovef gives

We denote byH*(£2) the usual Sobolev space [11] for any d .

s € R. Fors > 0, H(2) denotes the completion @f5°(£2) — {c) = / ViedV =0,

in H*(Q), whereCg° () denotes the space of all infinitely dt mes(€) Jo

differentiable functions of2 with a compact support if2. where we have used the boundary conditionsvoand c.

II. MIXING EFFICIENCY FUNCTIONALS

We set Therefore we can assume zero mean without loss of gen-
5 B 5 n erality. With the zero-mean assumption, the cost functiona
Ll(Q) = {L I(Q)} ’ reduces to
Ho(Q) = {H;()}", T )
2 2 n 1,°° ", Um
H(Q) = {H (2}, T
H} Q) = {veHQ) : div(v) =0in 0}, = / (plle(t: V|2 + allv®)? + BIVv(1)|?
L%, () = the closure offI§ ;, () in L*(Q). 0 (D) ||
. 2
The L? norm of a functionf(x) € L?(Q2) is denoted by 7‘ ot ) dt + pl|e(T5 V)| )
1] = / I£(x)[2dV 1z Then the optimal control problem is to minimiz&in an
O ' admissible weight spadé = (H}(0,T))™
The strain tensor of the velocity = (v1,v92,v3) IS Jut, - uk) = min J(u, - um).  (5)
denoted by (w1, um) €U
dvi vy On The minimizer(uf,--- ,ur,) is called anoptimal weight.
gv1 gv1 guv1 1 m
811 amg amg
Vv=| g2 gfu fu | IIl. OPTIMALITY SYSTEMS
2—;-3 2—;-; 2—;-; The existence of an optimal weight was proved in [23] and
The mean concentration ofx, t; v) is defined by ?Seir(])rig?]ahty system for the optimal weight can be derived
(ot v)) = — / o(x, £ v)dV. Theorem 3.1: Letvy(x), -, Vi (x) € HY 4, (2)NC(Q)
mes(Q) Jq be a set of linearly independent velocities(df;, - - - ,u,) is
Let v1(x), -, ¥m(x) € H! . (Q) be a set of linearly 2N optimal weight under the efficiency functionaldefined
independen7t veI7c>cities amdl,?’-d-w, wm € H(0,T). As in by (4), then it satisfies the following system
[23], we define the following mixing efficiency functional % + (v Ve = rV2, ©6)
J(ula"'vum) 89
’ 2 > o7 (V- V)g = —kV2g + pe, @)
= /0 (plle(ts v) = (et v) |I* + allv()]] m o
av(t)|? el / ViV = / gvi VeV
+8(|Vv(t)|? +7‘ 5t ) dt = @ @
* Vi (Vs — 25,
() = (eTiv) |2, ©) ra v+ tows = v, ®
wherev is given by (2),7 > 0 is some desired time, and . e . .
a>0,8,v, 1 p > 0 are weight constants. For the physical v = Zvi(x)ui t), j=1--,m, 9)
motivation of this functional, we refer to [23]. 5 131
The weight constants in (3) play an important role in B_C = 8_9 =0 ondqQ, (10)
determining the control strength. For small valueswof, v, n _n* B .
the functional will result in an optimal solution with a srhal ui(0) = (1) =0, i=1,-,m, (11)

variance of the scalar, but with big magnitudes of the véyoci o(x,0) = (x), gxT)=—pc(x,T). (12)



IV. UNIQUENESS OF OPTIMAL WEIGHT that e, satisfies

To prove that the optimal weight is unique, it suffices ge,

_ 2
to prove that the optimality system (6)-(12) has a unique 3; + (u-Vie. = w&Viec+((w—u)-V)ez(w), (18)
solution (note that the system has at least one solutior sinc 0 0 Oe.
an optimal weight exists). We can achieve this by developing ece(x,0) = ¢, on 0 ondQ.

a number of estimates about the solutions of (6)-(12).
For convenience, we state a well-known estimate [23Jultiplying (18) by e. and using the boundary conditions,

about the solution of (1) as follows. we obtain the equation
Lemma 4.1: Let v € L?(0,T; L2, (). Then the solu-
tion ¢ of (1) satisfies the following estimate 1d leo(®)]I?
2dt "¢
t
le()lI* + 2/@/ IVe(s)1* ds = ||| (13) = —r|Vee® + /Q ec((w—u)-V)ea(w)dV
0
Lemma 4.2: Let vi(x), - , Viu(x) € H} ;. () N C(9) < W) = u®)lwllec [ Vealtiw)l.  (19)
be a set of linearly independent velocities. ketes; g1, 92;
(u1,- -+ um), (wi,--,wp) be the solutions of (6)-(12) |ntegrating over, ¢] gives
correspondlng the |n|t|al conditions, ¢, respectively. Set
u= Zviui,w = Zviwi' Then the solutions satisfy the lec(®)]]” < |3 = c3|?
follovi/i:nlg estimates: | +2 02est lee(s)ll
t
mas llea(s) - ea(o)I? < [ 1(s) — ullcVea(s. wlds
0<s<t 0
o . < Q-
< 2l el + el [ llw(s) —uls)lds, (14) 1/2
¢ 0 +2 Jnax, lec(s) </ [w(s) —u(s)||% ds)
k[ 19 - ) ds 2
0
o_ o2y Lypop [ 2 x (/ |V02(57W)|2d5) )
< e =l + -l /0 [w(s) —u(s)||Z.ds, (15) 0
2 . . .
max, llg1(s) — g2(s)]] which implies that
6M2p*(T —t) |\ oy, 44 2 2 0_ .0y2
< (2T + 2oy s, lecls)l” < e —
T /2
></ [w(s) —u(s)||3ds + 2p*[|er (T) — co(T)|? +2 max lec(s)| (/ [w(s) —u(s)||2, d8>
0
2M20* (T —1), o o2 1/2
+4/{ llei — esll?s (16) « (/ ||VCQ(S,W)||2dS>
0
and <l =&l
ik +5 (gmax e ) +2 [ wis) - uls) s
/ d_(ul(s)a , Um (8)) 2 \o<s<t ' ©
0 S ‘
2 2
L wa(s). - ()| ds < J, 19ete, .
S
K C0 2
< ”25” / lgr(t) — go ()2t It then follows from (13) that
2.2 0112
IK <w I M2||62(T)||2) nax, lec(s)]I* < 2[|e§ — &3] (20)
t
T _ 2 2
« [ 190 - Ve, a7 w4 [ wts) — uGos [ 19l wlPas
0

whereM is the Poincaré’s constant in the Poincaré’s inequal- <
ity and K is a positive constant.
Proof. Sete. = ¢1(u) —co2(w). A direct calculation shows This proves (14).

9 t
2|} — e” + E”C(Q)HQ/ [w(s) —u(s)||2ds.
0



Using the first equation of (19), we derive that

1 t
g e+ [ [Vec(s) s

< e = eI
t
+J£3§tllec(s)|\/0 [w(s) —u(s)|lool|Vea(s, w)llds
< e =P
. 1/2
_ 2
+0rgg§tllec(s>l\ (/0 |w(s) u(8>|ood8>
. 1/2
< ([ 1vestswras)
0
This implies that
1 lec(t)] + tHV ()] d
20%?%% Ce " 0 cel? ’
< e =P
. 1/2
_ 2
+Orgg§tl\ec(s)ll </0 [w(s) u(s)lloodS)
' 1/2
x(/ |Vc2(s,w)|2ds)
0
< e =)

1
+— max |le.
2 0<s<t

t
></ [Vea(s, w)|*ds.
0

It then follows from (13) that

t
2
n/ IVeo(s)|2ds < [l — Q2
0

@+ [ Iw) - ue)lds

1 t
O [ w(s) -~ u)lds. @)
K 0
This proves (15).
Sete, = g1(u) — g2(w). A direction calculation shows
that

Oegy

ot +(u-V)e, = —kVZe,
+((w —u) - V)ga(w) + pec in Q, (22)
eq(x,T) = plea(T) — e1 (1)), % =0 ondf.

Multiplying (22) by e, and using the boundary conditions
we obtain the equation

1d
—— leg(t
> llea®)]

+ /Q eg((w—u)-V)ge(w)dV + p/Q egecdV

K[ Vegl* = [w(t) = u()soleg (1)1 Vgt W
—plleg@lllec®)ll (23)

2 2
=K [[Veg]|

Y

Since(e,) = 0, we have the following Poincarés inequality

[10], [11]
leg @ < M|[Vey(D)]-

whereM is a positive constant. Using the Young's inequality,
it therefore follows from (23) that

d 2 2
7 lea@I” = 25 [[Veg]|
—2[[w(t) —u(t)colleg ()[[[Va2(t; Wl
—2Mp||Veg(@)|[lec()]l

26 || Veg|* = 2[w(t) — u()]loolleg ()| Vg2(t: )|

Y

2
26|V, (B + 5 llecDI?
~2flw(t) — u(t) clleg (1) Vg2t W)l

M2p2
=S et (24)

Integrating oveft, T| gives

2
t)]|” <2
Jeg )] < 2 max. ey (s)]

T
></t [w(s) —u(s)lleol|Vg2(s, w)||ds

T 2
M=p
+M2||01(T)—02(T)H2+/ 5
t K

T
leg(s)] </t [w(s) —U(S)HiodS)
T 1/2
X (/t ||Vgg(s,w)|2ds>

T
LPlles(T) = ex(T)| + /

2

lec(s)l|*ds

1/2

IN

2 max
0<s<t

M?p

2K

> 2
llec(s)[|"ds.

It therefore follows from (20) that

2
t <2
e fleg (0] < 2 max eg(s)]

T 1/2
x ( / Iw(s) - u<s>|iods>

T 1/2
x ( / |v92<s,w>||2ds>
) t

M?p

2K

i 2
lec(s)[I"ds

T
e (T) — ex(T) | + /

1
— max
2 0<s<t

T
X / IV ga(s, w)
t

T
leg(s)]1* + 2/t [w(s) — u(s)[l3.ds

IN

|%ds

M?p*(T —t)
—— ¥ = &

12 (ler (T) = ea(T)||* + 1

2,2 _ T
S gp2 [ fwts) — o) s, @9



which gives

2
nax leg(t)]

T T
< 4 / [w(s) — us)|%ds / Vg (s, w)||?ds

IM2p2(T —t

192l (T) — ex()|2 + 2T =D 0 o2
2M2p%(T —t T

20 g [ - uio) e (26)

To estimateftT |V ga(s, w)|?ds, we multiply (7) (change
to g2) by g2 and integrate ovef) x (¢,T). Using (13) and
the Poincaré’s inequality, we can readily derive that

1 k[T
Sln®I + 5 [ 19ga(s,w) s

M2p2 T —¢ lu2
< XD 4 Dy, @)
It therefore follows from (26) that
2 1
max [le, ()] [
6M2 T —t 2 [2]
< (BT + 2 e ?)
T [3]
<[ Iws) = ulo)|ds
0
121 er(T) — eo(T)? [‘”
IM?2p2(T — ¢
bt CER @8

This proves (16).
Using the well known estimate [11, Chapter 6] on the®
boundary value problem (8), it follows from (13) and (27)

that there exists a constaft, independent of;, c® such that  [7]

T a
—(u1(8), -, um(s
A R 5
d 2
’ [10]
2 2
< K o) - e [ 19a@l
T
+K max {lga(t)]) / IVer(t) = Vea(t)|2at -
K] -
< / lor(t) — ga ()2t 13

2K
M2 2T CO 2
T

T
x /0 Vet (£) — Vea () dt.

This proves (17).

Theorem 4.1: Letv1(x), -+, Vim(x) € Hy 4, (9NC(Q)
be a set of linearly independent velocities. If the initial[17]
condition ¢° is sufficiently small or the diffusivitys is
sufficiently large, the optimality system (6)-(12) has aqura
solution, and then the optimal weight is unique.

[14]
(29) 15

[16]

(18]

Proof. Suppose the solutions of the optimality system (6)-
(12) is not unique. Noting that) = ¢§ = °
from (14), (15), (16), (17), and the Poincaré’s inequalitst
there exists a constaiif, independent of:, ¢ such that

, we deduce

Jo ua(s), -+ um(s) = (wi(s), wm(s))] ds
< K” ” (12M2p2T?2 + M2 2T+17/w)
< fo II(U1(S),-~- () = (wi(s), -+, win(s))]| ds.

If the initial conditionc? is sufficiently small or the diffu-
sivity « is sufficiently large such that

KJjeo|*

g (12MPp° T

M?p*T + 17kp%) < 1,

then we must have

T
/O N (), () = (r(s), - w(s))]|? ds = 0.

This is a contradiction.
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