
Collaboration, Knowledge and Interoperability —
Implications for Software Engineering

Norbert Jastroch
MET Communications GmbH

Eschbacher Weg 10
61352 Bad Homburg, Germany

norbert.jastroch@metcommunications.de

Vassilka Kirova
Alcatel-Lucent

600-700 Mountain Ave.
Murray Hill NJ 07974, USA

vassilka.kirova@alcatel-lucent.com

Thomas J. Marlowe
Department of Mathematics and

Computer Science
Seton Hall University

South Orange NJ 07079, USA
thomas.marlowe@shu.edu

Abstract—As software development becomes more
collaborative, all aspects of software engineering and their
management need to accommodate and support collaboration.
In this paper we present an updated survey of key concerns,
known challenges, and potential alternative solutions,
addressing a number of new issues and opportunities.

Keywords- Software Engineering, Collaborative Platform,
Flexibility, Interoperability, Business Policies.

I. INTRODUCTION
Inter-organizational cooperation in software product and tool

development has proliferated throughout the industry and has
become the “de-facto” business model [15, 30]. Continuing trends
for outsourcing and offshoring, subcontracting, and academic-
industrial collaboration, plus increasing sophistication and
specialization of business software (and for that matter, most of
knowledge-intensive software), make an ever stronger case for
close inter-institutional collaboration throughout the development
process. While legal constraints and environmental support, along
with a number of management issues, appear to be the most
substantial challenges, we contend that all aspects of software
development need to be re-examined and revised to effectively
address end-to-end collaboration. In this paper, we consider
collaborative development of large, complex systems, with large or
complex components, which may however be feature- or service-
based, rather than resulting from a functional decomposition, and
in contrast to projects that can be handled as supply-chain or other
simpler structures [34,42].

A key challenge in multi-organizational collaboration efforts
is that institutional and team responsibilities need to be assigned
early in the project inception phase, which requires the scoping,
decomposition of the product and the definition of the overall
project structure to be established well before the application and
often the technology to be developed is even marginally
understood, but after the parties have agreed to enter into a
collaborative venture.

That, especially in large, complex or innovative projects, in
turn requires flexibility in defining the scope and allocation of
responsibilities in interactions between teams and partnering
institutions. In development, it further requires flexibility in
defining component, subsystem and feature boundaries,
understanding that the best high-level decomposition may not be
the optimal, but also be driven by management objectives,
technical expertise, resources, and other considerations in the
individual organizations, and perhaps as importantly, by the
relative stability and simplicity of the interfaces between partner
components. Any tradeoffs evidently should not devalue the
collaboration below any established cost/benefits threshold or
jeopardize the system objectives. This is a critical consideration in
assembling the collaborative venture at the start.

A notable current trend in both the technical and management
aspects of software development is flexibility. In the requirements
and development segments, this often involves some form of agile
development. Agile frameworks accommodate changing
requirements through continuing customer involvement, self-
organizing closely collaborating cross-functional teams, short
iterations, application of technical practices such as test-driven and
acceptance test-driven development, test automation and continues
integration, as well as through avoiding unnecessary specification
and upfront extensive analysis. However, agile development may
not work well as the sole process model even within a single
organization [2, 6]. Agile methods bring the much needed
flexibility but given the constraints of multi-organizational
collaboration, we expect that instead a typical collaborative
development effort will support local agility within partner
components, paired with a more tightly controlled flexibility at
organizational and corresponding component and subsystem
boundaries and interfaces.

In the body of the paper, we very briefly consider a number of
policy, artifact, and process issues that need to be resolved to foster
and optimize both the eventual products of the collaborative
venture and the health of the collaboration itself. Addressing these
issues complements rather than competes with selection and
establishment of a good collaborative platform, development,
production and enterprise-level social and tool environment. Tools
address the question of how collaborative work is to be supported,

whereas our concern here is focused on what needs to be done to
allow the process, product and partnership to succeed, and to
provide a new scientific, technological, and business practices
asset base to allow software enterprises and in particular small-to-
medium software engineering and computer-based application
firms to collaborate and to establish themselves as innovation
drivers and significant players in the area of future Internet
enterprise systems. (This paper revisits and extends an earlier
survey, presented at ICSSEA 2010 [14], in part to incorporate a
great deal of recent work on interoperability and the use of the
cloud for collaboration, and in part as a result of additional work
by us and by others in the intervening two-and-a-half years.)

II. EARLY BUSINESS POLICY DECISIONS AND INTEROPERABILITY

In a collaborative software development project, several key
decisions must be made prior to anything but the earliest vision of
a system/product and its business case, either during project
initiation by the individual partners, or very early in the inception
phase. The first, of course, is determining whether to collaborate,
how to collaborate, and with whom [34]. Assuming a fully
collaborative project, decisions must be made in several
dimensions, before or during project inception: responsibilities in
the collaboration, resource acquisition and management,
establishing or reinforcing trust and familiarity, process and
platform consistency, and protection of security, intellectual
property, and general interests of the partners and other
stakeholders [35, 37].

Responsibility and resource issues include (1) a policy on
sharing of resources, including key personnel, and on cross-
organizational discipline-specific collaboration [7], and
(2) responsibility for the cost of new shared tools, personnel, and
resources. Business project support includes (1) establishing risk
management plans and management contingency policies for the
collaboration, and (2) establishing a venue or process for mediation
and arbitration, as well as (3) creating inter-organizational plans
for cross-sensitizing, communication and training, and (4)
establishing a procedure for interaction with the customer and
other stakeholders—who should not be confused and overwhelmed
by multiple contacts with different organizations.

Process and platform technical support includes (1)
standardization of platforms, tools, and processes—or at a
minimum alignment and support of standard and consistent views,
(2) creating a shared software configuration management
environment, and guidelines for sharing of artifacts, and (3)
determining a level of agility and a level of formality—locally and
at interfaces [9, 16, 28, 39]. Finally, collaboration must be
supported by seeking and maintaining steady buy-in from
management, technical staff, IT and legal departments, while
respecting the interests of the individual partners and stakeholders.

In recent years, the concept of interoperability [5, 19, 31] has
grown from a focus on technical compatibility to include cultural,
knowledge and risk, business and strategy, and ecosystems
interoperability, and to address communication in a very broad
sense—culture, trust, social networks and other social exchanges—
as well as security and use of the cloud. The cloud is important for
collaboration, providing a (potentially secure) location for the
location of collaborative resources, artifacts and work products,
including collaborative configuration management and a neutral
and (ideally) trusted site to measure activity for the purposes of
credit and use assessment, at least of explicit knowledge.

Finally, collaboration introduces a much wider sense of and
scope for exceptions [32], not only in the discovery and handling of

run-time exceptions and exceptional flows during software
development and deployment, but also for business and technical
practices and processes, knowledge and risk management, and other
phases and aspects of a collaborative project. Beyond those that
arise from product requirements, one will need to handle exceptions
arising from incomplete or inexact specification of partner rights
and responsibilities, misunderstandings or failures in fulfillment of
those rights and responsibilities, and failures to establish true
interoperability in some—not necessarily technical—aspect.

III. REQUIREMENTS AND KNOWLEDGE MANAGEMENT

Incomplete, imprecise or changing requirements interact with
the initial architectural decomposition, affected by missing
knowledge, dynamic information, or the need for knowledge
integration and synthesis. Hence, means for iterative discovery,
analysis, knowledge building, and delivery become essential. First,
support for dynamism in defining features and components is
needed [41]. Collaborative projects, because of their highly-
distributed work processes, must employ mechanisms for
continuous requirements clarification between separated
development teams, and support knowledge flow between partners
and with collaborative artifacts and interfaces [16, 27, 28]. As a
substitute to face-to-face communication, which is hard to
establish and maintain in such projects, enhanced requirements
tracing should be used to afford an efficient means to clarify
requirements and address the related risks of misinterpretation [11,
13].

Second, approaches must be developed for collaborative
knowledge discovery and integration, and collaboration in
detecting and proactively managing unknown risk (compare [33,
34, 37]), while addressing risks to security, privacy and intellectual
property, either inherent in the sharing and integration of
knowledge, or from this coordination itself. Third, complex
systems working within dynamically changing environments are
influenced by inbound influences and outbound impact—beyond
their functional interfaces—that cannot be fully anticipated, but to
which they need to adapt. These inbound and outbound factors
may introduce risks or opportunities, and may be well, or partially,
or even not at all understood in advance. As result, support for
adaptability becomes a major operational requirement and
consideration.

A clear need is to link flexible approaches, including agility,
from software engineering frameworks with the collaborative trust
paradigm from the organizational sciences, knowledge exploration,
augmentation and exploitation concepts from knowledge
management, and ideas from interoperability, cloud computing, the
Internet of services, and software-as-a-service.

Finally, the issue of ownership of integrated, collaborative and
emergent knowledge, rights to the use of intellectual property
generated by the collaboration, and mutual obligations in the
knowledge framework, will inherently involve technical, business
and legal considerations [29].

IV. ARCHITECTURE, ANALYSIS AND DESIGN

The large-scale organization of the product—its architecture—
is partially determined by (or along with) the high-level
decomposition and definition of interfaces between components
developed by different parties—compare [12]. Although the
parties could use different architectures within their own
components, interoperability is widely recognized as a necessity
for successful collaboration. Uniformity (or at least consistency)
of architecture, of process and of development platform increases

communication bandwidth through shared vocabulary and mental
maps and reduces miscommunication; supports better software
configuration management and flexible interfaces, facilitates
knowledge discovery and integration; and enables evolution,
scalability and other non-functional properties. Most collaborative
ventures will benefit from a scalable architecture with some
measure of agility within components and flexibility across their
boundaries. Uniformity of platform and practice may be facilitated
through the cloud and interoperability standards such as [5], but
these must be supplemented with collaborative artifacts and
structures, and through examination of a number of the issues
discussed here.

Agile development practices, if used, will have impact as well.
[6, 8] suggest approaches for extending agility to widely
distributed and collaborative ventures. Assuming an incremental
iterative (if not fully agile) collaboration requires changes both in
artifacts and in the activities. The most important from an
architecture and design point of view is that there will be two
distinct if sometimes overlapping workflows: the first,
determining relatively stable high-level components, boundaries
and interfaces, and a second, determining the internal organization
of those components, both of which can run in iterations gradually
addressing additional aspects, features and requirements or adding
more details.

If feature-based partitioning of the work is being used
(preferred by some agile teams and organizations) instead of
component-based one, and features cross components’ boundaries,
then a common development environment, for example, cloud-
based, becomes essential. In such cases component and interface
guardians may need to be selected to assure coherent and
consistent designs and implementation of individual components.
If cross-cutting features are to be implemented with aspects [21],
implementation needs either to be localized into individual
components (and possibly interfaces), or raises another dimension
of coordination and interoperability.

Inter-component interfaces must be flexible enough to support
at a minimum handling of newly discovered exceptions and
alternate flows, and to permit exchange of metadata and system
information [17, 26, 28] for cross-component optimization and
refactoring [8], without initially requiring communication of large
amounts of such information, only a small fraction of which may
actually be useful. Such interfaces can be extended to process and
business objects, to support other activities and artifacts such as
cross-component traceability and policy localization/specialization.
On the other hand, the partition into components cannot be
considered “sufficient to proceed” without at least some analysis of
component responsibilities. These cannot be determined without
considering both structural factors such as internal cohesion and
cross-component coupling, in order to limit the cross-
organizational footprint of change, and policy and resource factors
such as division of labor and availability of expertise.

Achieving a consistent architecture in a collaborative project,
however, is not a trivial issue even when standard tools, e.g., UML
and SysML, are being used, and when knowledge and risk
management are fully interoperable. The impact of defect models
has to be investigated [22]. Furthermore, implications of model
defects for implementation need to be understood.

V. TESTING
Testing is inherently a collaborative activity [43]. It depends

on close collaboration between teams and team members and often
involves interactions with customers. Thus policy and governance

rules similar to the ones related to requirements apply and need to
be addressed accordingly.

Testing is ongoing, multilayered (unit, integration, acceptance)
and should be automated. The organization of testing activities
highly depends on the project partitioning model, the process
models (development frameworks) used by the individual partners,
the architecture of the product, the organization of the
collaborative partnership, and the allocation of responsibilities.
Unit level testing is essential and remains a local responsibility,
while the responsibilities for integration and acceptance testing
have to be agreed on as part of the collaborative partnership.
Integration testing across organizational boundaries may require
additional planning, testing effort, coordination, and sharing of
testing strategies and resources. Not only does integration testing
have to work across organizational boundaries, but in addition
responsibilities for debugging and fixes must be assigned across
those boundaries. Further, if more sophisticated and stateful
interfaces or interaction patterns, such as those in [17, 27] are used,
then interfaces themselves must be subject to unit testing. Also
regression testing for changes that affect interfaces and possibly
cross component boundaries will only be as effective as cross-
component dependence analysis and traceability allow [17].
Acceptance testing reintroduces the issue of customer and user
interaction and of indirect contact with the customer. Finally, to
the extent that knowledge management, interoperability and/or
collaboration require new or modified tools, those tools themselves
will need to be tested—ideally, both alone and integrated with
product components.

Any selected testing model will place specific requirements on
the development, build (including continuous integration), revision
control and change management environments. For example,
continuous or early system and stress testing will require
continuous integration or early integrated builds of the entire
product. The effectiveness of the testing will depend not only on
test automation, but also on good global revision control, change
management, and traceability tools.

The testing practices have to be well-aligned with the
requirements and feature definition and scoping methods and will
depend on the development approach. And while full deployment
of agile frameworks such as SCRUM [23, 24] across all partners of
a multi-organizational collaboration project may not be feasible
(due to organizational management, legal and other constraints),
implementing agile test-related engineering practices is arguably a
good fit. For instance, ATDD (Acceptance Test Driven
Development) [24, 38] provides for good ongoing collaboration
within the teams as well as with the customers.

VI. METRICS AND EVALUATION

There are four major issues for collaboration-aware metrics:
the definition and selection of metrics, the gathering of data
(measurement) for the metrics, and analysis and interpretation of
the resulting measures, and finally the identification (and partner
acceptance) of the need for additional focus and resources, and of
required steps for remediation or improvement. Just as testing
consists of unit testing, integration testing, and system/project
testing, metrics for a collaborative project will include component
metrics, organizational metrics (since an organization may be
developing more than one component), and global metrics, for
product, project, and process alike.

Evaluation for and within collaborative systems requires
metrics that (1) accommodate collaboration, (2) measure readiness
for collaboration and the effectiveness of the collaboration, and

(3) identify business policy/process and software process obstacles,
and driving forces and enablers for collaboration [3, 18, 36].
Metrics for collaboration are needed for pre-collaboration, mid-
collaboration, and post-collaboration, and must measure not only
technical success, but also business and other aspects. For
accommodation, existing metrics (whether used locally or for the
entire project) must be modified or re-interpreted, and new metrics
may be needed [20]. For example, effort and resource estimates
must account for the impact of collaboration. On the other hand,
cost estimates and measures can be used to evaluate the
effectiveness and overhead of collaboration, and also to guide
project restructuring and system refactoring. Still other existing
metrics may no longer be useful in a collaborative setting, or may
need to be retired or replaced.

Ideally, one would like to be able to estimate the cost of
developing a project in isolation, and compare with the costs of the
collaborative venture. Even an approximate heuristic may be
difficult to establish, however, since additional resources and
training, as well as opportunity loss if single-organization
development took longer or used substantially greater resources,
impose additional costs, and establishment of relationships with
other organizations may create ongoing benefits, while the cost of
loss of knowledge and intellectual property, especially implicit and
tacit knowledge, may be hard to quantify, or to measure against the
gain in knowledge from partners and the collaboration itself.

Readiness metrics must measure not only technical readiness,
but management support for collaboration. Finally, while data
collection is not a serious problem for local metrics, comparison of
measures or computation of global metrics necessitates
development of guidelines and practices for uniform collection.
Responsibility for collection of the relevant information must be
assigned (to an organization or a tool), and consideration must be
given as to the proper encoding and weighting of the resulting
measures.

VII. MAINTENANCE AND EVOLUTION

Post-release responsibilities for maintaining a large, complex
and strongly interacting system raise new issues for collaborative
development. First, the lifetime of the system or product line may
be longer than the lifetime of the collaboration. Also, a single
change may require small changes in a large number of
components. Finally, there is a timing issue: other than for major
faults or security threats, changes can often be deferred. Key
questions are (1) Who is responsible for determining that a change
is needed, and when the change should be made? (2) How will the
nature and locations of the needed changes be determined? and (3)
Who will be involved in implementing and in testing the changed
system? These questions tie into both the need for global
traceability/dependence analysis [17] and arbitration [33], and
especially questions of ownership and access to integrated,
collaborative and emergent knowledge and intellectual property.

Perfective maintenance, as well as reuse, often involves
refactoring. Local refactorings, assuming flexible interface
structures (e.g., Façade and Adapter design patterns), is typically a
local matter. But refactoring across interfaces or changing
component responsibilities will again involve negotiation and
determination of responsibilities, and significant intellectual
property issues if one or more of the partners is no longer involved
in the collaboration—and even more so if the partner is no longer
doing business but retains IP interests in the product.

VIII. IT AND COMMUNICATION SUPPORT

Formal and informal communication links between partners
form one of the four key factors in collaborative success, after
management and technical competence, collaboration-aware risk
management, and a collaboration-friendly management and
technical environment. The success of any collaborative venture
depends on availability of multiple forms of communication and
meeting support, and technical and managerial support by IT
departments and staff. The development environment should
provide for sharing of code, test structure, design artifacts, and so
on, preferably in shared tools or views. The Cloud and virtual
environments provide additional opportunities and resources, with
some associated risks.

IT is also responsible for implementing security, access
control, intellectual property and privacy protections, knowledge
management, etc. Typically a layered or hierarchical permission
structure will be required, allowing sharing of some information
(or summaries) with collaborators but not outside world, as defined
by rules and policies in the collaboration agreement. As
mentioned above, the cloud may provide an opportunity to avoid
some risks, by isolating collaborative knowledge and structures
away from partner resources. This issue needs a great deal of
future attention.

IX. PROCESS COMPLIANCE AND OPTIMIZATION

Both product and process in software development are
frequently held to standards, whether internal, industry-based, or
required by the customer or by regulation. In the first three cases,
both product and process compliance can follow a structure much
like that we propose for risk management [33]: Internal
compliance checking by each party, mutual checking at interfaces,
and a mechanism for arbitration and negotiation. In some
situations, review by a certified third party may also be required.
Additional issues include: obstacles arising from internal
standards, process or artifact inconsistency, and compliance scope
across national boundaries. The cloud and interoperability
standards are likely to introduce further compliance issues as their
use becomes more standard and more regulated. Finally, technical
process and business policy optimization resembles perfective
maintenance—very important and usually beneficial, but neither
urgent nor worry-free, and therefore requires a similar process.

X. BUSINESS PROCESS ISSUES AND MANAGEMENT CONTINGENCY

PROCESSES

Business management in a collaboration handles the standard
tasks for management of software projects—personnel, budget and
schedule tracking, and so on. Beyond these, in the literature and in
our previous work [33, 35, 37], the most significant policy issues
for collaboration are identified as (1) creating and maintaining
trust, (2) handling differences in language and culture, both
organizational and social, and (3) maintaining corporate support.
In addition, management processes must assure the continuing
quality of risk management and communication, and deal with
problems and changes in the set of partners and with non-
fulfillment of partner responsibilities. Corporate support for
complex collaboration may need to overcome resistance from
managers, lawyers and other professionals more used to the
simpler demands of supply-chain collaboration. On the other
hand, the growing use of the cloud may reduce IT and management
resistance to some forms of sharing and to communication across
institutional firewalls.

XI. SECURITY, PRIVACY AND INTELLECTUAL PROPERTY

Collaborative processes need knowledge from diverse sources,
some of which raise specific security, privacy, or intellectual
property concerns: product information, process information,
platform and tool information, and recent corporate decisions and
history. Use of such information, and more general concerns about
such issues tend to harden management, IT, and legal expert
resistance, and to inhibit collaboration. These issues must be
addressed along both corporate (social/economic/legal) and
technical dimensions.

On the corporate side, consider cost-benefit analysis for
various levels of information sharing, with restrictions on external
use of information gained. Sharing promotes trust and cooperation,
with the risk of high rewards for low contributions. This suggests a
differential approach, in which information is layered, and inner
layers revealed only as a partner contributes. However, some
knowledge must be shared a priori, since it will be required to
initiate the collaborative process or product inception. In addition,
changes in the set of partners can pose difficulties for this
approach.

Technically, there are at least two aspects in alleviating these
problems: first, selection or development of filters, abstractions, or
views of information so that useful but safe summaries are
available to collaborators and customers; and second, selection of
publicly available or sharable tools and methods through which
information can be imported and exported. These of course must
complement use, undertaken and certified by all collaborators and
other stakeholders, of standard secure mechanisms for data storage
and information transmission, to address third-party threats. This is
especially important for the development and communication
platforms. Successful collaboration must rely on a shared and
uniform view of important artifacts, and on rapid, reliable, and
secure broad-spectrum communication, both formal and informal.

As mentioned above, the cloud and standards for
interoperability are likely to help overcome resistance to controlled
sharing of information, but do not, in our opinion, do much to
address the difficulties arising from the need to share complex,
structured information, the difficulty in handling integrated,
collaborative, or emergent knowledge, or the problems arising
from management of intellectual property. In addition, the cloud
and artifacts required for interoperability do not resolve, and may
well exacerbate, security and privacy concerns.

XII. RELATED WORK AND CONCLUSIONS

Most of the existing literature on collaboration considers intra-
organizational collaboration, or focuses on selected aspects of
inter-organizational interaction. This paper in contrast specifically
addresses inter-organizational collaboration from a broad, multi-
faceted and systemic point of view. Incorporating agile practices
in intra- or inter-organizational collaboration is discussed in [5, 8,
10, 25, 26]. Herbsleb [12] and Whitehead [43] address the
problems of collaboration, but largely within a single organization,
and primarily limited to tool support and software configuration
management, including expansion of the set of desirable artifacts;
changes to management policy and perceptions, and in the
software development process, are also discussed. Erickson [4]
and Schadewitz [40] provide patterns for component interfaces and
interactions. But, other than in our previous work, there seems to
be little explicit focus on, for example, collaboration-aware
metrics, changes in testing, knowledge management for
collaborative software development, or risk management per se.

There are two other major sources of work that should be
considered. First, there is a great deal of recent work on
interoperability [5, 19, 31] and, second, on the use of the cloud for
software development and for information sharing, including for
collaborative development [1, 42].

In conclusion, we have addressed the implications of inter-
organizational collaboration for a number of development aspects
—including both core software engineering and umbrella
activities. Inter-organizational development and collaboration for
large, complex or innovative software products calls for new
approaches to accommodate both organizational differences and
flexibility in development. As we discuss, all aspects of software
development—technical, process, and management—are affected.
This paper outlines pressing issues and presents initial or partial
solutions in several areas.

REFERENCES

[1] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, A. Ghafoor: A
Distributed Access Control Architecture for Cloud Computing, IEEE
Software, Volume 29, Number 2 pp. 36-44, March/April 2012.

[2] B. Boehm and R. Turner, Balancing agility and discipline: A guide
for the perplexed. Addison Wesley Professional, 2003.

[3] C. Cook and N. Churcher: Modelling and measuring collaborative
software engineering. 28th Australasian Conference on Computer
Science, Newcastle, Australia, pp. 267-276, January 2005.

[4] T. Erickson, Interactions Design Patterns Page,
http://www.visi.com/~snowfall/InteractionPatterns.html, 2010.

[5] European Commission: Enterprise Interoperability Science Base.
http://cordis.europa.eu/fp7/ict/enet/fines-eisb_en.html, last accessed
November 10, 2011.

[6] A. Filev, “Adopting and Benefiting from Agile Processes in Offshore
Software Development,” Microsoft Architect Journal, 2010,
http://msdn.microsoft.com/en-us/library/bb245671.aspx

[7] D. Flynn, E. Brown, R. Krieg: A Method for Knowledge Manage-
ment and Communication within and across Multidisciplinary Teams,
KGCM 2008, June 2008.

[8] M. Fowler, Refactoring: Improving the Design of Existing Programs,
Addison-Wesley, 1999.

[9] M. Fowler, Using an Agile Software Process with Offshore Develop-
ment, 2010, http://martinfowler.com/articles/agileOffshore.html

[10] K. B. Hass, The Blending of Traditional and Agile Project Manage-
ment, PM World Today, IX (V), May 2007, http://www.pmfor-
um.org/library/tips/2007/PDFs/Hass-5-07.pdf

[11] M. Heindl, St. Biffl: Risk Management with Enhanced Tracing of
Requirements Rationale in Highly Distributed Projects. Proceedings
of the 28th International Conference on Software Engineering, 20-28
May, 2006, Shanghai, China.

[12] J. D. Herbsleb, Global Software Engineering: The Future of Socio-
technical Coordination, 2007 Future of Software Engineering
(FOSE’07), Minneapolis, Minnesota, May 23-25, 2007.

[13] N. Jastroch, T. J. Marlowe, Knowledge Transfer in Collaborative
Knowledge Management: A Semiotic View, Journal of Systemics,
Cybernetics and Informatics, Vol. 8 (6), pp. 6-11, 2010.

[14] N. Jastroch, V. Kirova, C. S. Ku, T. J. Marlowe, M. Mohtashami,
Software Engineering Must Be Collaboration-Aware, (Position Pa-
per), Proc. of the 23rd International Conference on Software and Sys-
tems Engineering and their Applications [ICSSEA], Paris, France,
December 2010.

[15] N. Jastroch, V. Kirova, C. Ku, T.J. Marlowe, M. Mohtashami, S.
Nousala, Inter-organizational Collaboration: Product, Knowledge and
Risk, Journal of Systemics, Cybernetics, and Informatics, Vol. 9 (5),
30-35, Special Issue on Collaborative Enterprise, December 2011.

[16] N. Jastroch, V. Kirova, T. Marlowe, M. Mohtashami, Dams, Flows
and Views: Cross-Aspect Use of Knowledge in Collaborative Soft-
ware Development, Journal of Systemics, Cybernetics, and Informat-

ics, Vol. 9 (5), 36-40, Special Issue on Collaborative Enterprise,
December 2011.

[17] V. Kirova, T. Marlowe, Prendre en compte les changements dy-
namiques dans le développement cooperative du logiciel, Génie Logi-
ciel, Decembre 2008, Numéro 87, pages 15-25.

[18] G.L. Kolfschoten, P.B. Lowry, D.L. Dean, M. Kamal: A
measurement framework for patterns of collaboration. HICCS
Working paper, May 2007.
http://www.hicss.hawaii.edu/Reports/41CEWorkshop.pdf (accessed
January 2012).

[19] F. Koussouris, F. Lampathaki, S. Mouzakitis, Y. Charalabidis, J.
Psarras: Digging into real-life enterprise interoperability areas -
definition and overview of the main research areas. Contributed to the
CENT 2011 Symposium, in: Proceedings of the 15th World Multi-
Conference on Systemics, Cybernetics and Informatics (WMSCI
2011), Vol. II, Orlando FL, July 2011.

[20] C. S. Ku, T. J. Marlowe: Software metrics for collaborative software
engineering projects. Invited Session on Collaborative Knowledge
Management (CKM 2010), Proceedings of the 4th International
Conference on Knowledge Generation, Communication and
Management (KGCM2010), June-July 2010.

[21] R. Laddad, Aspects in action: Practical aspect-oriented programming,
Manning, 2003.

[22] C. Lange, M.Chaudron: Effects of Defects in UML Models – An
Experimental Investigation. Proceedings of the 28th International
Conference on Software Engineering, 20-28 May, 2006, Shanghai,
China.

[23] C. Larman and B. Vodde, Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum, Addison-
Wesley Professional, 2008.

[24] C. Larman and B. Vodde, Practices for Scaling Lean & Agile Devel-
opment: Large, Multisite, and Offshore Product Development with
Large-Scale Scrum, Addison-Wesley Professional, 2010.

[25] D. Leffingwell, Agile Product Manager in the Enterprise (2): A Con-
temporary Framework, The Blog: Best Practices for Large Enter-
prises, May 19, 2009,
http://scalingsoftwareagility.wordpress.com/2009/05/19/agile-pro-
duct-manager-in-the-enterprise-2-a-contemporary-framework/

[26] K. MacIver, The Agile Revolution, 14 July, 2008, http://www.inform-
ation-age.com/channels/development-and-
integration/features/451431/the-agile-revolution.thtml

[27] T. J. Marlowe, V. Kirova, Addressing Change in Collaborative Soft-
ware Development through Agility and Automated Traceability,
WMSCI 2008, 209–215, Orlando, USA, June-July 2008.

[28] T. J. Marlowe, V. Kirova, High-level Component Interfaces for Col-
laborative Development: A Proposal, Journal of Systemics, Cybernet-
ics, and Informatics, 7 (6), pages 1-6, 2009.

[29] T.J. Marlowe, N. Jastroch, V. Kirova, M. Mohtashami, A Classifica-
tion of Collaborative Knowledge, Journal of Systemics, Cybernetics,
and Informatics, Vol. 9 (7), 2011.

[30] T.J. Marlowe, N. Jastroch, S. Nousala, V. Kirova, The Collaborative
Future, invited summary article, Journal of Systemics, Cybernetics,
and Informatics, Vol. 9 (5), 1-5, Special Issue on Collaborative Enter-
prise, December 2011.

[31] T.J. Marlowe, N. Jastroch, S. Nousala, V. Kirova, Complex Collabor-
ation, Knowledge Sharing and Interoperability, submitted to
ICE2012.

[32] T.J. Marlowe, N. Jastroch, V. Kirova, An Approach for Discovery
and Handling of Exceptions in Inter-Organizational Collaborative
Software Development, submitted to Workshop on Exceptions and
Exception Handling, International Conference on Software Engineer-
ing, 2012.

[33] M. Mohtashami, T. Marlowe, V. Kirova, F. Deek, Risk Management
for Collaborative Software Development, Information Systems Man-
agement, 25 (4), 20–30, Fall 2006.

[34] M. Mohtashami, T. Marlowe, V. Kirova, F. P. Deek, A Comparison
of Three Modes of Collaboration, 15th Americas Conference on In-
formation Systems (AMCIS 2009) [CD-ROM], August 2009.

[35] M. Mohtashami, T. Marlowe, V. Kirova, F. Deek, Risk-Driven Man-
agement Contingency Policies in Collaborative Software Develop-
ment, 40th Annual Meeting of the Design Sciences Institute (DSI
2009) [CD-ROM], New Orleans LA, November 2009.

[36] M. Mohtashami, C. Ku, T. Marlowe, Metrics Are Needed For Collab-
orative Software Development, Journal of Systemics, Cybernetics,
and Informatics, Vol. 9 (5), 41-47, Special Issue on Collaborative En-
terprise, December 2011.

[37] M. Mohtashami, T. Marlowe, V. Kirova, F. Deek, Risk-Driven Man-
agement Contingency Policies in Collaborative Software Develop-
ment, International Journal of Information Technology and Manage-
ment, Volume 10 (2-4), p 247-271, 2011.

[38] N. Nagappan, E. M. Maximilien, T. Bhat, L. Williams, Realizing
quality improvement through test driven development: results and ex-
periences of four industrial teams, Empirical Software Eng., 13:289–
302, 2008.

[39] J. Pollock, R. Hodgson, Adaptive Information. Wiley-Interscience,
2004.

[40] N. Schadewitz, Cross-Cultural Collaboration, http://crossculturalcol-
laboration.pbworks.com/FrontPage

[41] K. Sullivan: Adaptation Architectures. Proceedings of the Third Inter-
national Conference on Design Science Research in Information Sys-
tems and Technology. (V. Vaishnavi & R. Baskerville, Eds). May 7-
9, 2008, Atlanta, Georgia: Georgia State University.

[42] G. Teichmann, E.M. Schwartz, F.M. Dittes: Collaborative
Engineering of Inter-Enterprise Business Processes. Special Issue on
Collaborative Enterprise, Journal of Systemics, Cybernetics, and
Informatics (JSCI), Vol. 9 (5), p. 57 – 64, December 2011.

[43] J. Whitehead, Collaboration in Software Engineering: A Roadmap,
2007 Future of Software Engineering (FOSE’07), Minneapolis,
Minnesota, May 23-25, 2007.

