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Abstract—This paper deals with time Petri nets, where a
firing interval is associated with each transition. Three semantics
(intermediate, atomic and persistent atomic) are proposed, in the
literature for this model, in the context of single-server/multi-
server and strong/weak semantics. This paper shows that, in
presence of conflicts, these semantics may exhibit some unex-
pected behaviours and properties. This paper proposes a new
semantics more appropriate to deal with conflicts.

Index Terms—Time Petri nets, semantics, conflicts, zone based
graph

I. I NTRODUCTION

Increasing complexity of systems used nowadays requires
rigorous formalisms and tools to automatically verify and con-
trol their behaviours. From this perspective, several formalisms
such as Petri nets, automata and logics have been developed.
Their purpose is to represent, using mathematical concepts,
systems in order to be able to verify and control the conformity
of their behaviour w.r.t. their expected services.

Automata and Petri nets are designed to model discrete
systems. In the context of real time systems, where the
behaviour is dependent of time, the used formalisms must
integrate explicitly the time factor. Timed automata and time
Petri nets appear in order to model hybrids systems, handling
discrete systems with continuous variables, i.e. the time.Hy-
brids systems model both the process and the control system.

Many ways exist to consider time in Petri nets. The time
constraints may be expressed in terms of stochastic delays of
transitions (stochastic Petri nets), fixed values associated with
places or transitions ({P,T}-Timed Petri nets) [13], or intervals
labeling places, transitions or arcs ({P,T,A}-Time Petri Nets)
[6], [9]–[11], [14].

For{P,T,A}-Time Petri Nets, there are two firing semantics:
Weak Time Semantics (WTS) and Strong Time Semantics
(STS). For both semantics, each enabled transition has an
explicit or implicit firing interval derived from time constraints
associated with places, transitions or arcs of the net. A
transition cannot be fired outside its firing interval, but in
WTS, its firing is not forced when the upper bound of its firing
interval is reached. Whereas in STS, it must be fired within
its firing interval unless it is disabled. The STS is the most
widely used semantics. There are also multiple-server and
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single-server semantics. The multiple-server semantics allows
to handle, at the same time, several time intervals per place
(P-TPN), per arc (A-TPN) or per transition (T-TPN), which it
is not allowed in the single-server semantics.

In this paper, we consider T-time Petri nets (Merlin’s
model) [10], called here time Petri nets (TPN in short), in
the context of single-server and strong semantics. It seems
to be strongly appropriate with communications protocol. In
this model, a time interval is associated with each transition.
From the semantic point of view, a clock is associated with
each transition to measure its enabling time. A transition
is firable if its clock has reached its interval and must be
fired before overpassing its interval, unless it is disabledby
another firing. In [2], three semantics intermediate, atomic
and persistent atomic are discussed for time Petri nets. They
differ in the way that clocks are handled (memory policies),
when a transition is fired. The intermediate semantics resets
clocks of all transitions disabled when input tokens of the fired
transition are consumed (intermediate marking). The atomic
and persistent semantics suppose that the firing of a transition
is atomic and do not consider the intermediate marking.

In general, the intermediate semantics is weakly expressive,
w.r.t. the weak timed bisimulation, in comparison with the
atomic and the atomic persistent ones [2]. But, for time
Petri nets with upper-closed intervals1, the three semantics are
equivalent w.r.t. the weak timed bisimulation [2]. From the
practical point of view, the atomic and persistent atomic se-
mantics are more appropriate for the specification of observers
of systems [2]. The intermediate one seems to be closer to the
intuitive interpretation and, for this reason, is widely used.
By intuitive interpretation (or semantics) of time Petri nets,
we mean that a transition may be fired if it is maintained
continuously enabled (using the same tokens) until reaching
its firing interval (i.e., its enabling time is inside its firing
interval).

In this paper, we first show that, in presence of conflicts,
these semantics may exhibit some unexpected behaviours and
properties w.r.t. the intuitive semantics. Then, we propose a
new semantics more appropriate to deal with conflicts.

This paper is organized as follows. Section II is devoted
to the definition of Merlin’s model [10] and a short review
of the different semantics proposed in the literature for this
model. In Section III, we show, by means of examples, that
in some conflicting situations, the scenarios obtained w.r.t.
the intermediate semantics doesn’t respect the constraintof
waiting time. In Section IV, we propose a new semantics

1An upper-closed interval is an interval of the form[a, b], ]a, b], [a,∞[ or
]a,∞[.



whose idea is to measure the waiting time of each token.
Finally, the conclusion is presented in section V.

II. T IME PETRI NETS AND THEIR SEMANTICS

A. Timed transition system

Usually the semantics of a timed model is defined by means
of a timed transition system, where the set of states of the
model, its actions as well as its transition relation between
states are defined. The actions of a timed model are of two
types: discrete actions for events and positive real numbers for
time elapsing.

Formally, a timed transition systems is defined by a 4-uplet
< Q, q0,Σ,→> whereQ is a set of states,q0 ∈ Q is the
initial state,Σ is the set of discrete actions (disjoint from the
time domainR+ of the continuous actions), and→∈ Q×(Σ∪
R+)×Q is the transition relation. A tuple(q, a, q′) ∈→, also
denotedq

a
−→ q′, represents the transition from stateq to state

q′ by the discrete or continuous action (time progression)a.

B. Definition of TPN

Petri nets, introduced by Petri in 1962, with their useful
abbreviations and extensions are a powerful formalism, which
allows precise modeling and analysis of complex systems,
using a wide range of methods and tools.

This paper deals with time Petri nets, a simple yet powerful
model useful to model and verify real time systems, like com-
munications protocol. This model associates a firing interval
with each transition. It allows to model different kinds of time
constraints (delays, durations, deadlines, etc.), even ifthe exact
delays or durations of events are not known. Formally, a TPN
is defined by a 7-uplet:< P, T, Pre, Post, α, β,M0 > where:

• P is the set of places in the net;
• T is the set of transitions (s.t.P ∩ T = ∅);
• Pre ∈ [P×T −→ N] is the backward incidence function,

indicating, for each transition, the tokens needed for its
firing;

• Post ∈ [P ×T −→ N] is the forward incidence function,
indicating, for each transition, the tokens produced by
its firing (we denoteC = Post − Pre the incidence
function);

• α ∈ [T → Q+] is a function which associates with each
transition the lower bound of its firing interval;

• β ∈ [T −→ Q+ ∪ {∞}] is a function which associates
with each transition the upper bound of its firing interval;

• M0 ∈ [P −→ N] is the initial distribution of tokens in
places, called the initial marking.

For convenience, we denotet• = {p ∈ P |Post(p, t) > 0}
the set of output places oft and•t = {p ∈ P |Pre(p, t) > 0}
the set of input places oft. We suppose here that•t 6= ∅, for
every transition of the net.

A time Petri net evolves according to two aspects: the
marking and clocks. Thus, we can represent the global state
of a time Petri net by a pair(M, ν), whereM ∈ [P −→ N]
is a marking of the Petri net, andν ∈ [T −→ R+] is a clock
valuation overT , which associates with each transition, the
value of its clock. Its initial state is(M0, 0T ), whereM0 is
the initial marking and0T is the null valuation overT .

A transition t is enabled inM , if there are enough tokens
in M for its firing (that meansM ≥ Pre(., t)). The firing
of t takes no time but leads to the markingM ′ obtained
by consuming tokens ofPre(., t) and producing tokens of
Post(., t): M ′ = M − Pre(., t) + Post(., t).

In time Petri nets, a transition is firable at state(M, ν) iff
it is enabled and its clock has reached its associated interval.
We denotefirable(M, ν) the set of transitions firable at state
(M, ν): firable(M, ν) = {t ∈ T |M ≥ Pre(., t) ∧ ν(t) ∈
[α(t), β(t)]}.

When a transitiont is fired, a new marking is reached,
where we can find some newly enabled transitions. We denote
↑ enabled(M, t) the set of transitions newly enabled in the
marking reached fromM by firing the transitiont. It indicates
the clocks that are reseted whent is fired fromM .

In time Petri nets, all clocks of transitions evolve uniformly
with time. We denoteν + d the functionν′ such that∀t ∈
T, ν′(t) = ν(t) + d. It specifies the evolution of time byd
units.

The behaviour of a time Petri net is defined by means of
the following timed transition system< Q, q0,Σ,→>, where
Q = (P −→ N)× (T −→ R+) is the set of states of the time
Petri net,q0 is its initial state,Σ = T , and→ is composed of
continuous and discrete transitions defined as follows:
Let (M, ν) be a state,d ∈ R+, t ∈ T , M ′ a marking andν′

a clock valuation overT .
• Continuous transition:

(M,ν)
d
−→ (M,ν′) if







ν′ = ν + d
∀t ∈ T : t /∈ firable(M, ν + d) ⇒

(∀d′ ∈ [0, d] : t /∈ firable(M, ν + d′))

• Discrete transition:
(M,ν)

t
−→ (M ′, ν′) if











t ∈ firable(M, ν)
M ′ = M − Pre(., t) + Post(., t)

∀t′ ∈ T : ν′(t′) =

{

0 if t′ ∈↑ enabled(M, t),
ν(t′) otherwise.

C. Semantics of TPN in the memory policy

Different semantics can be derived from the transition
system given above, depending on the definition of the notion
of newly enabled (memory policy) [1], [2]. The definition of
this notion has an impact on the behaviour and the properties
of the net. In [2], the authors have distinguished three memory
policies: intermediate, atomic and persistent atomic semantics.

a) Intermediate semantics:In the intermediate seman-
tics, the firing of a transition consists of two steps: consuming
tokens and producing tokens. A distinction is then made
between tokens used by a transition and those produced. All
transitions not enabled in the marking resulting from the
first step (intermediate marking) but enabled, in the mark-
ing resulting from the second step, are newly enabled. In
other words, letM be a marking,t and t′ two transitions.
The transitiont′ is (newly) enabled by firingt from M ,
if in the intermediate marking of this firing,t′ is disabled
(Pre(., t′) � M − Pre(., t)), but is enabled after the firing
of t (Pre(., t′) ≤ M + C(., t)). Moreover, in the context of
single-server semantics, the intermediate semantics resets the
clock of the fired transition (t = t′). Therefore, the set of the
newly enabled transitions by firingt from M is defined by:



↑ enabled(M, t) = {t′ ∈ T |Pre(., t′) ≤ M + C(., t) ∧

(Pre(., t′) � M − Pre(., t) ∨ t = t′)}

b) Atomic semantics:In the atomic semantics [2], the fir-
ing of a transition is supposed atomic. Unlike the intermediate
semantics, the atomic one does not consider the intermediate
markings. In this case, all transitions not enabled before firing
a transition but enabled after its firing are newly enabled. More
precisely, letM be a marking,t and t′ two transitions. The
transitiont′ is (newly) enabled by firingt fromM , if it belongs
to the following set:

↑ enabled(M, t) = {t′ ∈ T |Pre(., t′) ≤ M + C(., t) ∧

(Pre(., t′) � M ∨ t = t′)}

c) Persistent atomic semantics:In the persistent atomic
semantics [2], a transitiont′ is newly enabled after the firing
of t in the markingM if it belongs to the set:

↑ enabled(M, t) = {t′ ∈ T |Pre(., t′) ≤ M + C(., t) ∧

Pre(., t′) � M}

The difference between the atomic semantics and the persis-
tent atomic one lies in the particular case of the fired transition.
If the fired transition enables again itself, its clock is reseted in
the atomic semantics but not reseted in the persistent atomic
semantics. It is then considered as a newly enabled transition
in the atomic semantics but not newly enabled in the persistent
atomic semantics.

D. Age or threshold semantics

Boyer, in [5], considers two kinds of semantics, according
to the meaning of clocks. In the first one, theage semantics,
the firing condition is about the waiting time of tokens. When
a transition is labelled[a; b], it means that tokens must wait
betweena and b time unit to fire. It is the case of the
machining, for example. In the second one, thethreshold
semantics, tokens are not distinguished, only matters the load.
When a transition is labelled[a; b], it means that the number
of tokens must be greater than the weight duringa to b time
unit to fire the transition. This conceptualisation is adapted to
load mechanisms.

Different models with age semantics exist in the literature,
like P-time Petri nets and A-time Petri nets. In these two
models, the fire of a transition considers the age of tokens and
not a number. However, it seems less used in T-time Petri nets.
We’ll see for example that intermediate, atomic and persistent
atomic semantics are threshold semantics.

III. PROBLEM OF HANDLING CONFLICTS

The way that conflicts are handled differs from one se-
mantics to the other, leading to different behaviours and
properties. So, it is essential for a semantics to be clearly
and coherently defined, in order to avoid incoherences, in the
manner that similar situations are managed. To be intuitiveis
a true advantage for a semantics.

The intermediate semantics distinguishes tokens, thanks to
the intermediate step, between produced tokens and the others.
However, it is important to note that the intermediate semantics
is not an age semantics. That’s the matter of our first study:
what difference we can find in case of conflicts.

Let us explain, by means of examples, such conflicting
situations and their impact on the behaviour and properties
of the model.

A. Change of behaviour

Consider the net at Fig. 1. According with the waiting time
of tokens, the system is expected to behave as follows: the
token in placeP1 goes to the placeP2 at date1. The initial
token inP2 is either consumed byT 2 or T 3 at date1. The
token created byT 1 in P2 should be consumed at date2.

Suppose now that the transitionT 1 is fired before the others,
from the initial markingP1 + P2. This firing leads to the
marking2P2, where both transitionsT 2 andT 3 are enabled
and not in conflict. These two transitions were enabled but
in conflict in the initial marking (before firingT 1). Let us
examine how the three memory policies handle this situation.

P1

P2

P4P3

T1[1, 1]

T2[1, 1] T3[1, 1]

•

•

Fig. 1. A TPN with two conflicting
transitions

(P1 + P2, ν(T1) = ν(T2) = ν(T3) = 0)

(2P2, ν(T2) = ν(T3) = 1)

(P2 + P3, ν(T2) = 0, ν(T3) = 1)

(P3 + P4,−)

T1 at 1

T2 at 1

T3 at 1

q1

q2

q3

q4

Fig. 2. An unexpected run of the TPN
at Fig. 1

In the intermediate semantics, when the transitionT 1 is
fired from the state(P1+P2, ν(T 1) = ν(T 2) = ν(T 3) = 1),
clocks of both transitionsT 2 and T 3 are not reseted, since
they are enabled before, during and after firingT 1. With this
semantics, the firing ofT 1 leads to the state(2P2, ν(T 2) =
ν(T 3) = 1). From this state, the model behaves as if both
tokens inP2 were created at the same time (at date0). For
instance, if the first token inP2 is used byT 2, thenT 3 is
considered as not newly enabled and fired immediately after
T 2 (see Fig. 2). Unlike what is expected, the two tokens reach
their destination at the same time. TransitionT 3 is fired even
if its token is just created and did not wait the one time unit
needed. The constraint of waiting time is then not respected
for T 3. From this point of view, this semantics seems to be
incoherent with the context of age semantics.

Both the atomic and persistent atomic semantics accept the
same unexpected run.



B. Change of properties

Let us now show that the change in managing conflict,
pointed out in the intermediate semantics, may have an impact
on the properties of the model. Consider the TPN at Fig. 3.
The TPN is bounded w.r.t. the intermediate semantics but is
unbounded w.r.t. the intuitive semantics.

In this net, the role of the transitionT 3 should be to empty
the placeP4 and then prevent the system to reach a state
whereP5 is marked. From such a state, the transitionT 5 will
be repeatedly fired every one time unit, leading to an infinite
number of markings (unbounded net).

In the intermediate semantics, from the initial state(P1 +
P2 + P4, ν(T 1) = ν(T 2) = ν(T 3) = 0), the model can
fire the transitionT 1 at date2 to reach the state(2P2 +
P4, ν(T 2) = ν(T 3) = 2). From this state,T 2 and T 3 are
fired successively at dates3 and4, leading to the dead marking
P3 (see Fig.4). Therefore, the enabling time constraint is not
respected forT 3. Indeed, in this scenario, the transitionT 3
uses the token created byT 1 and then should be fired4 time
units afterT 1 (at date6), unless it is disabled by firing a
conflicting transition. After firing successively transitionsT 1
and T 2 at dates2 and 3, both transitionsT 3 and T 4 are
enabled but in conflict. They are both firable at date6. The
firing of T 3 will disableT 4 and mark the placeP5 and then
enableT 5. The model is then unbounded w.r.t. the intuitive
semantics.

Note that the run given at Fig. 4 is also valid in the context
of the atomic semantics. For the persistent atomic semantics,
the accepted run coincides with the one given at Fig. 4 until
firing T 2. In the persistent atomic semantics, as the firing of
T 2, at date3, enables againT 2. Its clock is then not reseted
and the state reached byT 2 is (P2 + P3 + P4, ν(T 2) =
ν(T 3) = 3, ν(T 4) = 0). From this state, the transitionT 2 is
fired again at date3, which disablesT 3. The reached state is
then (2P3 + P4,−).

We have shown that for the same net, the way that con-
flicting transitions are managed may have an impact on the
behaviour and the properties of the model. It is then very
important to understand how the different semantics handle
the subtle cases of conflicts and to be sure that the behaviour
of the model, w.r.t. a given semantics, corresponds exactlyto
the expected behaviour.

Note that a TPN can be unbounded w.r.t. the intermediate,
atomic or persistent atomic semantics but bounded w.r.t. an
intuitive semantics about age of tokens. As an example the
TPN at Fig. 5 is unbounded w.r.t. the intermediate semantics
but bounded w.r.t. the intuitive semantics. Therefore, there
is no relationship between properties of the model w.r.t. the
intuitive semantics and the others.

IV. A TOKENS SEMANTICS

The enabling time of the transition is different with the age
of the youngest tokens used by the transition. To deal with this
difference, we need to identify tokens used by each transition
and to memorize the age of tokens, as it is evokated in [5].
Doing so, we can make sure that the enabling time of each
transition refers to the tokens to be consumed by the transition.

P1

P2

P3 P4

P5

T1[2, 2]

T2[3, 3] T3[4, 4]

T4[2, 2]

T5[1, 1]

2

•

•

•

Fig. 3. A bounded TPN
w.r.t. the intermediate se-
mantics

(P1 + P2 + P4, ν(Ti, i = 1, 3) = 0)

(2P2 + P4, ν(T2) = ν(T3) = 2)

(P2 + P3 + P4, ν(T2) = ν(T4) = 0, ν(T3) = 3)

(P3,−)

T1 at 2

T2 at 3

T3 at 4

q1

q2

q3

q4

Fig. 4. A run of the TPN at Fig. 3 w.r.t. the
intermediate semantics

P1

P2

P3 P4

P5

T1[2, 2]

T2[3, 3] T3[4, 4]

T4[2, 2]

T5[1, 1]

2

•

•

•

Fig. 5. An unbounded TPN w.r.t. the intermediate semantics

Moreover, in the context of single-server semantics, in the
TPN, only one clock is associated with each transition. This
clock is used to measure the time elapsed since it was last
enabled. The different enabling instances of the same transition
are handled sequentially.

To manage well the allocation of tokens to transitions w.r.t.
single-server semantics, we associate a clock with each token
and a queue of clock values with each place. The tokens of
each placep are then handled according to the FIFO (First In
First Out) discipline (the first token created inp is the first
token consumed fromp).

When a token is created in a placep, its clock is set to0.
This value is inserted in the queue ofp. All clocks of tokens
evolve synchronously with time until they are consumed. An
enabled transition is firable if the age of the youngest tokens
participating in its enabling has reached the firing interval of
the transition. It must be fired without any additional delay, if
the age of its youngest tokens has reached the upper bound of
its firing interval, unless it is disabled.

A. Formalisation

Formally, we define the TPN state by a pair(M,µ), where
M is a marking andµ is a function overP , which associates
with each placep a queue of clock values. Each queue is
managed FIFO and then ordered from the older to the younger
(decreasing order of ages). For example, if a placep has 4
tokens with ages3, 3, 2 and1, its queue isµ(p) = [3, 3, 2, 1].

The initial state is(M0, µ0), where∀p ∈ P, µ0(p)[i] = 0,
for 1 ≤ i ≤ M0(p), if M0(p) > 0, andµ0(p) = [], otherwise.



As mentioned before, tokens within each place are handled
FIFO, an enabled transition will always use the oldest tokens
from each place. Thus, if an enabled transitiont usesPre(p, t)
tokens from the placep, the age of the youngest token from
p used byt is the elementµ(p)[Pre(p, t)] of the queueµ(p).
For example, ifµ(p) = [3, 3, 2, 1] and t needs3 tokens from
p, then it uses2 tokens with age3, and1 token with age2.
The age of its youngest token is exactly its enabling time (i.e.,
2).

Let (M,µ) be a state andt a transition enabled inM . We
define the enabling time, the firing condition and the set of
firable transitions as follows:

• The enabling time oft is the age of the youngest token
used byt:

min
p∈•t

{ µ(p)[Pre(p, t)] }.

• The firing condition oft is then:

min
p∈•t

{ µ(p)[Pre(p, t)] } ∈ [α(t), β(t)].

• The set of firable transitions from a state(M,µ) is:

firable(M,µ) = {t ∈ T |M ≥ Pre(., t)∧min
p∈•t

{ µ(p)[Pre(p, t)] } ∈ [α(t), β(t)]}.

Formally, our semantics is defined by the transition system
< Q, (M0, µ0), T,→> whereQ = ([P −→ N]) × ([P −→
Queues]) is the set of states and the transition relation→ is
defined as follows: Let(M,µ) and (M ′, µ′) be two states,t
a transition ofT andd a nonnegative real number (d ∈ R+).

• Continuous transition:
(M,µ)

d
−→ (M ′, µ′) if2











M ′ = M
µ′ = µ+ d
∀t /∈ firable(M,µ+ d) ⇒

∀d′ ∈ [0; d]t /∈ firable(M,µ+ d′)
• Discrete transition:

(M,µ)
t
−→ (M ′, µ′) if



























t ∈ firable(M,µ)
M ′ = M − Pre(., t) + Post(., t)
µ′ is built this way:
Initialise µ′ with µ;
∀p ∈• t, pop fromµ′(p) thePre(p, t) first elements;
∀p ∈ t•, push inµ′(p) the element0, P ost(p, t) times.

B. Calculus of the state zone graph

The verification of time Petri nets properties is based on
abstraction, whose aim is to represent, by removing some
irrelevant details, the infinite state space of the model by a
finite graph, which preserves properties of interest. Thereare
two well known abstraction techniques used in the literature
for the reachability analysis of time Petri nets [4], [8], [12]: the
state class graph[3] and thezone based graph[7]. The basic
difference between the two abstractions is the state definition.
In the state class graph method, states are defined by a marking
and a function, which associates a firing interval with each
transition. In the state zone graph, states are defined using
clocks as explained in Section II. Both methods can be used
in the context of our semantics in a similar way as done for
other semantics.

We have implemented a preliminary version of the con-
struction procedure of the zone based graph [4], w.r.t. our

2The operationµ+ d increments withd time units all clock values within
queues ofµ.

(P1 + P2 + P4, 0 ≤ P11 = P21 = P41 ≤ 2)

(2P2 + P4, 2 ≤ P21 = P41 ≤ 3, 0 ≤ P22 ≤ 1, P21 − P22 = 2)

(P2, P22 = 3)

(P2 + P3 + P4, 1 ≤ P22 ≤ 3, 0 ≤ P31 ≤ 2, 3 ≤ P41 ≤ 5,

(2P3 + P4, P31 = 2, P32 = 0, P41 = 5)

(P3, 0 ≤ P32)

P22 − P31 = 1, P41 − P31 = 3)

T1

T2

T2

T4

T4

T2

E1

E2

E3

E4

E5

E6

Fig. 6. The state zone w.r.t. our semantics of the TPN at Fig. 5

semantics. As an example, we report in Fig. 6, the zone based
graph obtained for the TPN at Fig. 5.

V. CONCLUSION

In this paper, we have studied time Petri nets model and
its different semantics: the intermediate, the atomic and the
persistent atomic one. We have shown that the intermediate
semantics is not an age semantics, and wrongly used can
involve some unexpected and incoherent behaviours: some
tokens may be used by a transition even if, they did not wait
the required time. We observ the same phenomenons in the
context of the atomic and persistent atomic semantics.

To cope with this problem, we have proposed a semantics
based on the age of tokens to deal with conflicts. This
semantics associates clocks with tokens and then allows to
handle appropriately conflicts, respecting the waiting time of
tokens.

We have shown, by means of examples, that a TPN may be
bounded w.r.t. the intermediate, atomic or persistent atomic
semantics but unbounded w.r.t. our semantics. Reciprocally,
a TPN may be unbounded w.r.t. the intermediate, atomic or
persistent atomic semantics but bounded w.r.t. our semantics.
Therefore, there is no relationship between properties of the
TPN w.r.t. our semantics and others.

Note that in non-conflict situation, our semantics can simu-
late the intermediate semantics by adding a self-loop placeto
each transition.

Finally, as a perspective, we will investigate the comparison
of the expressiveness of our semantics with the others.
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