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Abstract
This article explains an approach to further enhance the
detection of geometric primitives namely straight lines,
based on the spline filter contour decomposition method
as shown in [1]. The aim is to split complex features
into simple primitives for which further processing steps
will lead to automated measurement results. Thus the
inspection plan generated is reusable without employing
additional CAD software tools. The feature recognition
approach proposed in this paper incorporates an adaptive
spline filter scale space method for smoothing contour
point clouds at subpixel-scale precision with the aim to
reduce the user influence on the setup of ROIs (regions
of interest) in image scenes and therefore increasing
usability of software interfaces.
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I. Introduction
Using searchline based algorithms in software for high-
precision measurement tasks at subpixel-scale usually
requires the tester to manually set up the inspection
plan by positioning measuring fields (regions of interest
with searchline setup) in the image scene. Approaches
using CAD data allow the use of algorithms that derive
measurement tasks to be executed directly from the
design data. In case the design data is not available,
the inspection plan has to be set up manually by the
tester according to engineering drawings or vague con-
text information. The method presented here focuses on
image data, acquired with an optical measurement device.
Since the input data for the algorithms used consists of
plain point clouds, this approach is not limited to image
data but could be implemented as well for touch probe
measurement devices. The common procedure to set up
the inspection plan, as could be seen in fig. 1, displays the
sensor data to the user on a screen. Based on the image
displayed and the idea of what kind of feature needs to
be measured, the user starts a selection process for every
single feature required. That includes selecting the type
of feature (e.g. straight line), positioning the region of
interest in the image scene where the starting and ending

point of the region needs to be set up manually by mouse
click interactions, followed by defining the length and the
orientation of the searchlines. Before the measurement
task can be executed (e.g. measuring distance, angle,
radius, etc.) the two dimensional input data needs to
be extracted from the grayscale image acquired. For the
regions of interest a combination of edge detection algo-
rithm and subpixeling will return point clouds for each
one of them. When all simple features are set, the user
continues with selecting the features of interest for which
the measurement task previously selected will return the
measurement results of the linked features (e.g. the angle
between two line segments). When all linked features are
measured, the inspection plan is fully processed and the
results will be displayed to the user. Improving objectivity
and accuracy of measurement results requires reduction
of user influence while increasing the level of automation.
The first step in automating inspection plans is to reduce
the user influence during contour decomposition tasks.
To analyze the image scene, the contour needs to be
split into shape primitives like line segments and arcs,
so that measuring fields can be positioned without user
interaction. Therefore the edge detection and subpixeling
can be autonomously invoked and return point clouds
for which the compensation element will be instantly
calculated. Employing an increased level of automation
for the user interaction phase during the measurement
process becomes beneficial not only concerning time
(speed up), when considering the workload scaling at
least proportional with the required number of regions
of interest to be set up for the inspection plan, but also in
accuracy when taking the correct positioning of the ROIs
into account. Therefore the need for less user interaction
enables the software design to provide greater usability
and facilitates the software to be used for education and
teaching purposes. Inexperienced users will be enabled
to use software tools for high precision measurement
tasks, without the requirements for detailed knowledge
concerning subpixeling methods. Another field of appli-
cation could be the support for reverse engineering from
real world measured data to parameterized CAD models.
For the problem shown here, the image preprocessing
steps were already completed, therefore the input data
for this approach is based on plain point clouds, extracted
at subpixel-scaled precision using common interpolation



methods as shown in [2]. Figure 2 displays the extracted
point cloud of an image showing the contour of a milling
tool, containing 1457 contour points.
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Fig. 1. Manual user interaction during the measuring process using
optical measurement devices that operate at subpixel-scale precision
employing searchline based algorithms.

II. State Of The Art
Using local contour curvature information for contour
decomposition problems is a common approach in com-
puter vision. The segmentation of the contour point cloud

Fig. 2. Point cloud representing object contour at subpixel-scaled
precision, containing 1457 contour points.

shown in fig. 2 is based on curvature information only.
The contour curvature criterion is used to discriminate
between line segments and arcs:

κ(t) ≈ const. ∧ κ(t) ≈ 0 for line segments (1)
κ(t) ≈ const. ∧ κ(t) 6≈ 0 for arcs (2)

For the continuous 2D space, the principle contour cur-
vature is calculated using equ. (3).

κ(t) =
dφ(t)

dt
. (3)

For the discrete contour points t, the local contour curva-
ture κ(t) is calculated using equ. (4) where φt utilizes
the atan2-function which generalizes the arctan( yx )-
approach:

κ(t) = φt+1 − φt−1. (4)

Using subpixeling methods as described in [2] usually
results in a noisy signal for the contour curvature data
caused by interpolated spatial positions of the contour
points. The corresponding contour curvature κ(t) for the
contour shown in fig. 2 is displayed in fig. 3. For most
object recognition tasks and shape analysis problems
pixel-scaled precision is sufficient. To further condition
the curve, methods like π

4 -clockwise smoothing based
on the pixelgrid, could not be applied due to the non-
equidistantly positioned contour points caused by sub-
pixel interpolation methods.

Treshold Methods
Contour decomposition using a priori set threshold values
for feature point detection at higher curvature amplitudes
(corner points) is not only time consuming in tweaking
the right parameter, but will result in loss of important
feature points or many false positives, according to the
profile’s roughness. Consequently the contour is split into
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Fig. 3. Computed contour curvature κ(t) for the object contour shown
in fig. 1

many separated segments which have to be joined by
extensive postprocessing operations [3]. Even applying
evolutionary algorithms will not necessarily lead to an
optimal parameter setup. The genetic algorithm applied
is trained using ground truth data, which resembles a
specific combination of profile roughness and waviness.
The critical component is the low-pass filter setup (see
section III and [1]) – if the contour profile to be segmented
is of significantly different roughness and waviness, the
parameter setup trained over a long time will not solve
the decomposition task.

Hough Transform

The transform method proposed by Hough [4] suffices
pixel-scaled precision for image data using a model based
approach to describe shape (e.g. lines, circles, ellipses).
For each pixel that supports a model, a counter in parame-
ter space will be incremented. When applied to subpixel-
scale, the computational costs of the method would be
tremendous. The Hough method itself does not localize.
To get the position of each element, a windowed contour
tracking followed by a split and merge algorithm will
return the contour elements. The major disadvantage is
the trade-off between precision and computational costs
when setting the parameter for the transformation.

Polygonal Fitting

Approximating the contour data by simple 2D polygons
usually requires a priori set threshold values. The basic
idea is to approximate a complex shaped contour by
shape primitives like line segments. The method is a
successively refining split and merge approach, where the
first and the last vertex of the contour will be connected
by a line segment. The point with the maximum distance
to the approximating element is the new breakpoint.
Consequently, from the starting vertex to the breakpoint
and from the breakpoint to the end vertex two new ap-
proximations will be set. The previous steps will be con-
tinued until the contour is completely split into approx-
imation elements according to termination criteria, e.g.
a minimal length of approximating line segments. Thus,

traversing the generated tree structure for the object’s
contour enables the use of measurements for the quality
of fitting to the contour segment. Using such significance
measurements, as proposed by Lowe [5], West/Rosin
[6] and Faber [7] could improve the overall quality of
the shape approximation, especially when comparing the
significance value for each type of shape primitive used
for the approximation (e.g. lines, circles, ellipses). On the
other hand this method depends on initially set starting
points and breakpoints. As a consequence this could
cause deletion of important feature points as shown in
[6]. Therefore they were not applied at initial contour
decomposition stages.

III. The Problem Setting

Detecting corner points means finding contour points that
provide a local peak in curvature. Therefore a low-pass
filter is set up, to discriminate the contour curvature of
the underlying shape from noise, caused by spatial inter-
polation due to the subpixeling. Smoothing the contour
curvature data using methods like triangular window av-
eraging or methods using local polynomial regression like
Savitzky-Golay filters (see [8] and [9]) always requires
correct estimation of the smoothing window length (see
[1]). While the Savitzky-Golay filter preserves higher
moments of the underlying data, it will return fairly
smooth data, when used within a filter cascade (in com-
bination with triangular filters [1]). The problem with the
filter setup still remains. Using evolutionary algorithms
for training contour peak point detection depends on
representative image material. The feature extraction will
fail if the contour to be processed has higher roughness
due to the highly fragmented initial segmentation results.
In That case postprocessing steps are required to join
the split segments into continuous contour segments for
further processing or measurement tasks. The method to
be applied needs to be more suitable due to the different
quality of input data.

IV. The Novel Approach

Corner points break the object contour into less complex
segments. Therefore the following section will present an
approach to obtain less fragmented segmentation results,
taking corner points into consideration. The aim is to split
the contour into a suitable set of shape primitives from
where on further processing steps could be implemented.
To distinguish feature points from the set of contour
points P:

P = {pi}, i = 1 . . . n (5)

the profile’s deviation in waviness and roughness will be
separated from the shape deviation using surface profile
filters. Applying spline filters as proposed in ISO/TS
16610-22 as surface profile filters, an input function
z(x) is mapped to an output function w(x) using spline



function filter kernels like the following for non-periodic
spline filters:

(1 + α4Q)w = z, (6)

In contrast to extrapolating the curve endpoints as shown
in [10], the non-periodic spline filter, based on natural
cubic splines, already provides natural boundary condi-
tions, i.e. second derivative at the free boundaries equals
zero. The periodic spline filter for closed profiles uses an
adapted matrix to ensure continuous second derivatives as
boundary condition. For further details on spline filters as
linear operators see [11] and [12]. The piecewise polyno-
mials smoothen the input data in a way that minimizes
the bending and therefore results in low pass filtered
surface profiles. To control the smoothness of the result,
the concept of wavelength based filtering is implemented
using the parameter α, given by:

α =
1

2sin(π∆x
λc

)
. (7)

The cutoff-wavelength λc as smoothing parameter is used
to separate the waviness and roughness of the input profile
data. The point spacing ∆x is computed by averaging the
distance between all points along the contour. The spline
filter returns relocated spatial positions for each contour
point, according to the smoothing parameters. To avoid
improperly chosen parameters, the average contour point
distance for the two dimensional case:

dj =
√

(xi+1 − xi)2 + (yi+1 − yi)2, i = 1 . . . n (8)

is used to calculate the average point spacing ∆x:

∆x := d =
1

n− 1

n−1∑
j=1

dj . (9)

When increasing the cutoff-wavelength λc, the overall
contour smoothing increases in a way that the noisy
curvature signal for the contour will be smoothened while
the underlying shape is still preserved. By raising the scale
the contour corner points will be smoothened as well. To
loop through the scales, a scale space1 using different
smoothing parameters λc is utilized by the ratio:

λc

∆x
. (10)

When utilizing λc

∆x as scale space interval, the contour
smoothing increases by raising the scale. Figure 4 depicts
the spline filter scale space using 85 scales (loop through
λc

∆x in the range 15 . . . 100), drawn on top of the contour
profile from fig. 2. It is important to note, that the shape
to be filtered could collapse, when rising the scale to high.

1Scale space methods employing Gaussian filter kernels for shape
description and analysis were already proposed by [10], [13]

In the case presented here, the shape will deviate more
and more from its original form. The major corner in
the middle of the contour will stay throughout all scales
and it will become the major feature at all scales, while
the two smaller corner points at the end of the contour
will be completely leveled out and therefore they will be
adapted by the smoothing scale to the shapes more and
more evident oval form.
To display the detected regions, the binary encoding of
the smoothened contour curvature is indicated by dark red
color, for regions, where:

κ(t) >
1

n− 1

n−1∑
j=1

κj . (11)

Regions with smaller curvature are displayed in light

Fig. 4. Spline filter scale space indicating feature points of higher
curvature than the profiles average in dark red color.

green color. Figure 4 depicts that contour irregularities
are still present in lower scales, while at higher scales
the contour is fairly smooth. Even the corner points were
smoothened and therefore bend in a way that the length
of possible corner segments decline, but they still remain
the major feature points over all contour points. The
serious difference in curvature between feature points and
profile points superimposed by waviness could be seen at
every scale (indicated using dark red color, see fig. 4).
Detecting feature points means finding high curvature
points at every scale. When iterating through the scales,
the regions of high curvature are still present, if they
resemble a corner region. Contour irregularities disappear
by rising the scale. Since the regions containing features
increase in length, only the minimal length throughout
all scales is of interest. Further constraints could be the
minimal length of feature point segments, in order to
exclude small segments deviated by contour irregularities.
Since a line intersecting two points does not resemble
deviation, the minimum amount of points could be set to
three or higher. The feature point detection throughout all
scales is displayed in fig. 5, where the input contour data
is split into segments using the feature regions detected.
To discriminate straight segments from others, threshold
based heuristics could be applied. Sezgin [14] proposed
to compute the ratio of accumulated point distances along
the extracted segment and the direct distance between
beginning and end of the segment:

r =
l2

l1
(12)



Fig. 5. Profile feature points at minimum width detected at every scale
indicated by vertical lines. The original profile is drawn using black
dotted line style.

The contour segments with values close to 1 represent
the candidate segments for straight line estimation. Setting
this threshold value highly depends on the surfaces rough-
ness as well. An almost perfectly smoothened point cloud
used to evaluate the threshold could lead to many straight
line misses, if the subsequent profiles inspected contain a
higher deviation among the contour points. This might be
an useful application for significance measurements, using
the contours deviation from an approximation element to
check whether a line fitting is appropriate or not. The
straight line segment fit afterwards is determined by using
two dimensional total least squares regression method.
The calculated center of gravity of the segments point
cloud equals the position vector of the straight line rep-
resentation. The direction could be estimated calculating
the eigenvector with the biggest absolute eigenvalue of
the covariance matrix V:

V =
1

n


n∑
j=0

(xj − x)2

n∑
j=0

(xj − x)(yj − y)

n∑
j=0

(xj − x)(yj − y)

n∑
j=0

(yj − y)2

 (13)

The segments extracted can be used for further compu-
tation or for measurement tasks as proposed by Werner
in [15]. Figure 6 shows the detected profile segments
using measuring fields as overlay. The indicated rect-
angular measuring fields in fig. 6 are set automatically,
providing perpendicular set searchlines to scan the image
scene. The new automated workflow is shown in fig. 7,
where subsequent to the edge detection and subpixeling
process, the automated feature extraction replaces the
former extensive block of manual user interaction. The
selection process of linked measurement tasks for the
features extracted remains.

V. Conclusion

The method presented provides further improvements to
state of the art methods, especially through its adaptive
character when applied to object contours which were su-
perimposed by roughness and waviness. The smoothened
contour preserves relevant shape information for further

Fig. 6. Results for straight line segment candidates indicated by
measuring fields for the searchline based measurement approach.
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Fig. 7. The workflow for the manual user interaction to set up regions
of interest is replaced by the automated feature extraction.

feature detection and extraction. The voting of curvature
points throughout all scales was used to detect feature
points. In the outlook, further improvements like split and
merge of already detected straight line segments could be
applied to reduce false positive detections and especially
to extend the line segments more closely to the corner



points. Furthermore the method needs to be extended to
distinguish not only straight line segments from corner
points but also circular and elliptical segments as well.
Based on the feature detection method presented, auto-
mated measurement tasks could directly be executed with-
out further user interaction. Less user interaction increases
the usability of highly complex measurement software and
therefore enables a more broad use of it. The inspection
plan generated is reusable and was provided without prior
knowledge of the milling tools CAD data. Therefore
this approach provides fast and automated generation of
inspection plans reducing the user influenced workflow
during the measurement process.
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