Extended Dataflow Model For Automated Parallel
Execution Of Algorithms

Maik Schumann*, Jorg Bargenda, Edgar Reetz and Gerhard Linf
*Department of Quality Assurance and Industrial Image Processing
Ilmenau University of Technology, Ilmenau, 98693 / Thuringia, Germany
Email: qualimess @tu-ilmenau.de

Abstract

The standard model of dataflow can express algorithms
consisting of command sequences where each and every
command is executed exactly once. This paper presents
extensions to the model that allows control flow to
be expressed within that model as well. Using these
extensions algorithms containing branches, loops and
even recursion can be composed as dataflow.

Keywords: parallel; programming; dataflow; control
flow; declarative; graphical;

1. Introduction

Industrial tasks that are performed by computers become
more and more complex and are invoked more frequently.
Therefore it becomes more essential to optimize the
software systems to reduce computation time and meet
the user requirements in terms of latency and throughput.
One way to enhance the performance of software is to
utilize previously unused computation resources and do
execution in parallel. In order to do that the developers
need knowledge and experience in parallel programming
which is a skill rarely seen especially in professional
programmers who do not work in the field of general
programming but rather have a specialized engineering
background and solve associated problems by creating
software. The aim of this paper is to provide a suitable
model for algorithms that allows for automated parallel
execution without additional effort in programming. In
order to do that the existing model of dataflow is extended
to include command flow structures to enable branches
and loops to be incorporated in the model.

II. State Of The Art

Besides manual parallelization in terms of explicit mul-
tithreading there are multiple approaches of simplified
ways to performance gain by parallel execution. On a
low level layer of abstraction there are extensions to the
processor’s set of commands that enable vector arithmetic
where identical operations are performed for each element
of the given vector arguments [1]. The basic principle
of OpenMP is an example of high level parallelization
techniques where the individual iterations of a loop can
be executed simultaneously [2], [3]. The common aspect

of these and other approaches is the fact that they need
to be applied inside the most basic operations in order
to take away the additional considerations necessary in
the development of parallel software. Depending on the
kind of problems the software system is supposed to solve
these basic tasks are not necessarily compatible to those
approaches.

III. The Basic Model

The basic model of dataflow is a directed acyclic graph
where each node is a black box operation that processes
incoming data to provide output data [4], [S].

type of operation

1 ®
inputs —@
r®

|7 outputs

Fig. 1. Schematic representation of an operation as a black box with
incoming and outgoing data ports.

As shown in fig. 1 the processing steps represented by
these nodes generally take multiple (strongly typed) items
of incoming data to produce multiple outputs. In terms of
math they represent a mapping between a n-tuple of inputs
and a m-tuple of outputs as shown in equ. 1 where each
set X; and Y; represents the expected data type for the
respective input or output.

f:XixXox - xX,=>YixYox---xY,, ()

The representation of an algorithm within this model
therefore contains a set of operations that need to be
performed and information about the origin of each input.
In contrast to the standard representation as a fixed
sequence of commands the dataflow does not specify
the order of execution as a total order but as a partial
order. Only the nodes which are directly or indirectly
responsible for the computation of input for a certain other
node need to be executed prior to that node. Therefore any
two nodes A and B where neither A (indirectly) computes
input for B or B computes data required for A can be
considered independent of each other. If that is the case
they can be executed in any order. A system that executes
algorithms specified as dataflow can utilize this feature to

identify parts of an algorithm that can be executed in
parallel.

Figure 2 represents an exemplary dataflow. The
edges/arrows in this schematic for example state that the
operation H processes output data of operations C and
D. Including indirect dependencies this means that the
operations A, B, C and D need to be completed, before
H can be executed. The operation I on the other hand
processes data produced by H so I cannot start before H
is finished, but there is no such relation between H and
any one of the operations E, F and G. As a result H can
be computed in parallel to any of these three operations.

c 3 fH\

\

Ec
ol [°

B | G [T 1

'y

» D
"f

A | F

Fig. 2. Schematic dataflow containing multiple operations and their
data links.

IV. The Model Extension

The basic model of flow processing is not limited to be
used as a representation of algorithms. If the flow does de-
scribe an algorithm though, it has an additional restriction
concerning the edges connecting the processing nodes:
Each edge specifies the source for an argument of the
target operation. Since the algorithm is deterministic this
source information needs to be non-ambiguous. Therefore
multiple edges with the same target node/operation that
are associated with the same argument of the target op-
eration are not allowed. This restriction limits algorithms
to have linear flow of control which means that neither
branches nor loops can be used.

In order to overcome this limitation this paper proposes
an extension to the model of dataflow. In addition to the
existing black boxes representing atomic operations white
boxes are introduced. To the outside these white boxes
have the same interface as the black boxes and therefore
the processing system can treat them alike. Contrary to
the atomic operations these white boxes or scopes also
have a flow structure on the inside as depicted in fig. 3
where the input presented to the white box is passed on
to the operations A and B and the data computed by D
and E is used as output of the white box.

These local scopes enable the model to represent a whole
algorithm or parts of it at different levels of abstraction by
hiding or revealing their inner structure. Additionally the
behavior of branching and looping can be implemented
hidden within the transition between the outside and the
inside of such a white box.

7
r&i
A
)
%

Fig. 3. Local scope or white box operation with inner dataflow
structure.

For branching an outer scope can contain multiple inner
scopes and choose the appropriate "case’ during the tran-
sition. The incoming data is then forwarded to the chosen
inner scope. After that scope finished its processing the
output data it produced is forwarded to the outer scope
and can then be passed on to the outside of the branching
scope. The principle of this construct is shown in fig. 4.

Zi

N

&
LWLY

Case A

Case B

Fig. 4. Hidden implementation of a branching scope.

If it was up to the user to build this construct, it would

contradict the restriction of non-ambiguity for data links.

This problem can be solved be abstracting the branching

construct and its behavior into a more general term of

whitebox or scope. Each of the inner scopes is not part

of the outer scope or its content, it is a view of the scope

under certain circumstances. Therefore the *operation’ the

scope performs is a sequence of steps:

1) Evaluate incoming data to select the appropriate case

2) Forward the incoming data to the associated inner
scope

3) Synchronously execute the selected inner scope

4) Dynamically connect the outgoing data ports of the
selected inner scope to the respective ports of the outer
scope

5) Forward the output data

Hence the user does not see multiple layers of scopes.

Instead he or she is presented with a branching scope

where only one of the cases/views is visible at any

given time (see figure 5(a) and 5(b)). The stacked scope

structure is implementation detail and therefore hidden

from the user.

Loops can be constructed in a similar manner. An outer

scope contains an inner scope which represents the body

Case A

Case A [Case B

(a) Case A selected

Case B

Case A [Case B

(b) Case B selected

Fig. 5. Representation of branching construct as a scope with multiple
views.

of the loop. Before the first iteration of the loop the
incoming data is forwarded to the inner scope. After each
run of the body this forwarded data can be updated based
on the intermediate output data effectively implementing
data feedback which is essential in iterative processing.
The principle structure of this construct is shown in fig. 6.
Since the interface for incoming data generally does not
match the output interface of the body the additional
update links are neither mandatory nor does the incoming
port with index ¢ necessarily get its updated data from
output port ¢. Arbitrary links are allowed.

Fig. 6. Hidden implementation of a looping scope that checks the
condition of continuation after each execution of the body.

The construct stated above is equivalent to a loop where
the condition for continuing the iteration is checked after
the body was processed. This means that the body runs at
least once and the presence of (intermediate) output data
is guaranteed. A loop that checks the condition before
running the body needs to specify default data as output
for the outer scope of the loop construct in case the body
is not executed at all and therefore cannot produce any
output. This can be done by combining the two constructs
as shown in fig. 7.

Again this is the structure of implementation. To the user
this can be presented in a manner similar to the views of
branching. Figure 8 shows the graphical representation
suitable for users with the multiple layers of scopes
hidden.

Using the technique of white box abstraction of sub-
structures it is even possible to enable the model to
express recursion. If a scope can be used as a template
for substructures it can also be used as a substructure of

o~ |
—e

Default

Fig. 7. Combination of branching and looping construct implementing
a loop that checks the condition of continuation before execution of the
body.

1!
1 "
L pe - -,
1 —pe P
Body
Body [Default
(a) Iterating body of the loop
L] L]
L] L]
Default
Body [Default

(b) Default alternative

Fig. 8. Simplified representation of a loop as different views of the
same scope.

itself.

As a consequence an algorithm execution engine that is
based on this model is required to be able to either do
the expansion of the structure dynamically at runtime
or to separate the functionality and configuration of an
operation from the data it actually calculates. The latter
method allows for a static substructure (the content of the
template scope) to be simultaneously used on different
levels in the stack of recursive ’calls’. In that case the
structure exists only once whereas there are multiple
containers for the data calculated on each level.

V. Experimental Results

The algorithmic model described in this paper has been
used for an automatic parallel algorithm execution engine
which has been tested on algorithms of industrial image
processing. The speedup of an algorithm executed by that
engine in comparison to standard sequential execution is
limited by the structure of that algorithm. If the operations
processing some data mostly form long chains, these
operations are not independent of each other and can only
be executed in their original order. The maximum speedup

of an algorithm can therefore be calculated based on its
structure.

In addition to the limitation of speedup by the struc-
ture of the algorithm there also is a limitation due to
overhead. Management and supervision of the operations
cause additional workload where the amount of necessary
processing depends mainly on the number of operations
in the algorithm. Since this workload is approximately
constant for a given structure, the limitation of speedup
is determined by the ratio of overhead compared to
operation workload. The measure of choice to determine
this overhead ratio is the efficiency E(m) as defined in
equ. 2 where T, is the total execution time when using
m identical processors.

T
m - Ty,

E(m) =)
In order to determine the amount of overhead introduced
by the sample implementation 1000 experiments per
granularity ¥ € K = {-10,-9,...,9,10} with mean
execution time per operation = 2¥ ms were conducted
on a quadcore processor based test system. The algorithm
used for testing consisted of 1000 independent operations
with random durations according to an exponential distri-
bution. The median values of efficiency F(4) are shown
in figure 9.

T
1
<
T 05
0 | | | | | |
2710 276 272 22 26 210

mean time per operation [ms]

Fig. 9. Median quadcore efficiency plotted against mean time per
operation.

Assuming the overhead introduces an amount « of addi-
tional workload per operation into the system, the limita-
tion of speedup results in a maximum efficiency according
to inequ. 3 for an algorithm containing n operations.

Ty

E(m)STl—ka.n)
Using the Gaussian least squares method on the measured
median values the overhead per operation on the exem-
plary implementation was determined to be 2.12 us.
The main goal of the algorithm modeling technique
described in this paper is an automated speedup of real
algorithms. In order to test the speedup performance the
exemplary implementation can achieve an image process-
ing based algorithm has been designed to solve a real
world measurement problem as described in [6]. The

setting of this problem is a dynamic measurement of the
cutting edges on a pivot-mounted drill or endmill.

First the structure of the algorithm was analyzed to calcu-
late a prognosis for the scaling behavior. This means that
the achievable relative computation time was predicted for
different numbers of available processors. This prognosis
is shown in figure 10 as box-whiskers-plots.

100 - % N

80

60

40

20 | :

relative computation time [%]

\ \ \
0 20 2! 22

processor count m

Fig. 10. Box-Whiskers-Plot of performance scaling prognosis normal-
ized by the median computation time on a single processor.

This prognosis was created by taking the structure of the
original algorithm while replacing the actual operations
with placeholders that have adjustable workload. The
workload of each placeholder was randomly set according
to an exponential distribution using a mean execution time
per operation of £ = 27%ms which is the approximated
value for the given set of operations in this algorithm. As
the distributions clearly show, the algorithm’s structure
can be sped up significantly by using multiple processor
cores. On the other hand, the figure also shows, that the
structure does not allow ideal parallelization which would
result in a relative execution time of 0.5 for m = 2
processors and 0.25 for m = 4.

Figure 11 contains the distributions for 1000 actual test
runs of the algorithm using identical input data for each
of the 3 tested processor configurations.

A comparison of the measured and predicted scaling
behaviors based on the median values of the respective
distributions reveals that there is a 99.7% correlation.
Additionally the efficiency predicted using the test algo-
rithm’s structure was calculated to be E(1) = 0.8626
which matches the limiting value of 0.8682 in figure 9
very well.

VI. Discussion

Using the dataflow based model for algorithm design and
execution pursues two goals at the same time. First of
all there is the benefit of speed that comes with parallel
execution. Second of all there also is the additional benefit

T

<100 1 .
[}

E 0| .
=)

S

S 60| i .
=

o

£

S 40| 1
(5]

=

ég“ 20 | s

O | | |

20 21 22
processor count m

Fig. 11. Box-Whiskers-Plot of measured performance scaling normal-
ized by the median computation time on a single processor.

of a more intuitive design environment for algorithms.
Designing an algorithm as dataflow for example removes
consideration of data storage and management from the
list of things to do for the developer due to the fact
that there are no explicit variables to store data in. The
combination of simplifications like that and the fact that
the algorithm can be implemented without having to
write a single line of code makes such an environment
more accessible to personnel without special program-
ming training.

Using the model extensions to standard dataflow de-
scribed in this paper it is possible to implement control
flow features like branches and iterations into a data
driven model. This allows an execution engine to automat-
ically detect and exploit opportunities for parallelization.
If the engine is capable of dynamic alterations of the
structure or it handles output data and local configuration
data of the operations separately it is even possible to
express recursive algorithms or adapt the basic principle
of OpenMP (simultaneous execution of multiple iterations
of the same loop) into this system to further increase the
utilization of potential for parallel execution.

The experiments conducted with the exemplary imple-
mentation have proven that it is also possible to effec-
tively use the potential for parallelization within a given
dataflow. There are two main influences to the scaling
behavior of the system which essentially determines the
potential benefit of using a dataflow based execution
engine. The granularity of the set of commands available
in the system has major influence on the performance gain
since the management of parallel execution also intro-
duces overhead that effectively cancels out any structure
based speedup if the individual operations are too small.
The exact limit of usefulness concerning the problem of
granularity needs to be determined for any specific im-
plementation. The implementation tested in this paper has

shown that a set of commands that run for approximately
1us or less is not suitable to be processed with this
engine. The image processing commands used in the test
algorithm on the other hand can greatly benefit from this
kind of parallel execution although the potential speedup
can only be utilized at approximately 86%.

VII. Conclusion

This paper introduced an extension to the standard model
of dataflow that allows control flow structures to be
used in a data driven algorithm design environment.
This can be used as a simplified way for programming
while additionally speeding up the processing without
the additional effort of manual parallelization. Using an
experimental implementation of a graphical editor and an
execution engine based on this model it has been proven
that real world problems can be solved with this approach
achieving a significant speedup over standard sequentially
programmed code.

Acknowledgment

The support of the InnoProfile initiative Qualimess at
Ilmenau University of Technology funded by the German
Ministry of Education and Research BMBF is gratefully
acknowledged.

References

[1] P. Herrmann, Rechnerarchitektur, 3rd ed. Braunschweig: Vieweg
Verlag, November 2002.

[2] OpenMP Application Program Interface, 3rd ed., OpenMP Archi-
tecture Review Board, May 2008.

[3] L. Dagum and R. Menon, “Openmp: An industry-standard api
for shared-memory programming,” IEEE Computational Science &
Engineering, January-March 1998.

[4] J. Brehm, Performance Analysis of Single and Multiprocessor
Computing Systems. Aachen: Shaker Verlag, 2000.

[5] K. Waldenschmidt, Parallelrechner. Architektur-Systeme-
Werkzeuge. Wiesbaden: Teubner Verlag, 1995.

[6] M. Schumann et al., “Measuring edges on pivot-mounted objects
during rotation,” in Advanced Mathematical and Computational
Tools in Metrology and Testing, ser. Series on Advances in Mathe-
matics for Applied Sciences, vol. 84, F. Pavese et al., Ed., vol. 9.
Singapore: World Scientific, 2012, pp. 358-365.

