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ABSTRACTABSTRACTABSTRACTABSTRACT

The conservatism of asymptotic stability conditions is considered

in terms of linear matrix inequalities for time-varying delay

systems. The conservative index is defined to evaluate the

conservativeness for both delay-dependent and delay-
independent stability conditions. The general results on ∞H
performance analysis are presented based on descriptor system

approach. The optimization approach is given to obtain the upper

delay and rational performances for the state-feedback controller

of time-delay systems. Experimental results verify the

effectiveness of the new method.

Keywords:Keywords:Keywords:Keywords: time-varying delay systems, conservative index,

descriptor system

1.1.1.1. INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION

Time-delay existing in many control systems is often a source if

instability. For the stability analysis of time-delay systems, there

are mainly two type of stability conditions proposed: delay-

dependent and delay-independent stability criteria[1-3]. The

delay-dependent conditions are generally less conservative than

delay-independent ones which do not include any information on

the size of delays. The choice of an appropriate Lyapunov-

Krasovskii functional is crucial for obtaining a solution to

various ∞H control problems[4-7]. In the state-feedback ∞H

controller design, special forms of Lyapunov-Krasovkii

functionals lead to simpler delay-independent and delay-

dependent linear matrix inequalities(LMIs)[8-12]. Concerning

the ∞H control problem for some time-delay systems, only a

delay-independent state-feedback solution has been achieved[13].

In order to reduce the conservatism of these stability conditions,

the descriptor system approach has been proposed in [1-2,5]. The

improved solutions are delay-dependent, however delay-

independent results can be obtained, for certain values of the

design parameters in [1]. We integrate the delay-dependent

conditions with time-independent ones by descriptor system

approach. A conservativeness index is introduced to evaluate the

conservatism for the state-feedback controller of time-varying

delay systems. The general asymptotic stability results are

presented on ∞H performance analysis. The optimization

problem is given to compute the upper value of delay and

minimum disturbance attenuation performance for system with

various size of delay. At last, the given numeral experiments

show that the new method is effective.

Notation: Throughout the paper the superscript "T" stands for
matrix transposition, nR denotes the n dimensional Euclidean
space with vector norm |·|. The space of functions that are square

integrable )0[ ∞ is denoted by ),0[2 ∞L . For real symmetric

matrices X and Y , the notation YX ≥ (respectively,

YX > ) means that the matrix YX − is positive semi-definite



(respectively, positive definite). I is an identity matrix with

appropriate dimension. In symmetric block matrices or long

matrix expressions, an asterisk (*) is used to represent a term that

is induced by Symmetry. Matrices, if not explicitly stated, are

assumed to have compatible dimension.
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We consider the following time-delay system[2]:
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Where nRtx ∈)( is the state, )(,00 tφτ ≡ is the initial

condition, the scalar 0>h is an upper bound on the time delays

2,1),( =itiτ , and 2121 ,,,,,2,1,0, DDCBBiAi = are

known real constant matrices. qRt ∈)(ω is the noise signal

which is assumed to be in ),0[2 ∞L ; pRtz ∈)( is the output.

However, the results in this paper can be extended to the case of

multiple delays.

As in [3], we consider two different cases for time-varying delays:

(1) )(tiτ are differentiable functions, satisfying for all 0≥t :

2,1,1)(,)(0 =<≤≤≤ idtht iiii ττ ̇ . (2)

(2) )(tiτ are continuous functions, satisfying for all

2,1,)(0,0 =≤≤≥ ihtt iiτ .

Now set )()( tytx =̇ , then as in [2], the delay system (1) can

be transformed into an equivalent descriptor form
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The following lemma is delay-dependent result on ∞H
performance analysis as theorem 5 in [2].

Lemma 1 Suppose 0>γ is a given scalar. Then, under zero

input 0)( =tu , for all 2,1),( =itiτ , satisfying (2), the time-

delay system (4),(5) is asymptotically stable and satisfies

22 |||||||| ωγ<z (6)

Under zero initial condition for all non-zero ),0[2 ∞∈Lω if

there exist matrices ii SRPPP ,0,,,0 321 >> , and

2,1, =iYi , such that the following LMI holds:
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There is the proof in [2].

A Lyapunov functional candidate is

)()()()( 321 tVtVtVtV ++=
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Similarly, for all constants 2,1),( =itiτ , the delay-dependent

result on ∞H performance analysis was given by Theorem 6 in

[2], corresponding to (7) with 2,1,0 == iSi .

3.3.3.3. CONSERVATISMCONSERVATISMCONSERVATISMCONSERVATISM JUDGEMENTJUDGEMENTJUDGEMENTJUDGEMENT OFOFOFOF TIME-TIME-TIME-TIME-
DELAYDELAYDELAYDELAY SYSTEMSYSTEMSYSTEMSYSTEM

The conditions of delay-dependent stability criteria take into

account of the size of delays. The delay-dependent approach

often has a limit of upper delay the time-delay system. The delay-

independent approach is developed to stabilize the systems with

long delay.

Set 2,1,0 == iRi , the condition given by Lemma is

transformed into the delay-dependent result on
∞H

performance analysis. It is known that the delay-dependent

stability conditions are generally less conservative than delay-

independent ones which do not include any information on the

size of delays. So, we define an index to evaluate the

conservativeness of stability conditions[1].

Now, choose a new )(2 tV :
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Where the conservativeness index ]1,0[∈ε . For 0=ε , the

stability condition is derived as the delay-dependent result in

Lemma 1; for 0=ε , the stability condition is derived as the

delay-independent result.

Then, we have the following stability condition on
∞H

performance analysis.

Theorem 1 Suppose 0>γ is a given scalar, ]1,0[∈ε . Then,

under zero input 0)( =tu , for all 2,1),( =itiτ , satisfying (2),

the time-delay system (4),(5) is asymptotically stable and

satisfies (6), Under zero initial condition for all non-zero

),0[2 ∞∈Lω if there exist matrices

ii SRPPP ,0,,,0 321 >> , and 2,1, =iYi , such that the

following LMI holds:
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, P is given in (9).

We consider the state-feedback control law:

)()( tKxtu = (11)

Substituting (9) into (4),(5), wo obtain the structure of (4), (5)

with

KBAA 200 += , KDCC 2+= ,

11 ,,,2,1, DCBiAi = are the same. It is obvious that the

stability condition of the state-feedback control system on ∞H

performance analysis is generated for Theorem.

Theorem 2 Suppose 0>γ is a given scalar, ]1,0[∈ε . For

all 2,1),( =itiτ , satisfying (2), the time-delay system (4),(5)

with control law (11) is asymptotically stable and satisfies (6),

Under zero initial condition for all non-zero ),0[2 ∞∈Lω if

there exist matrices ii SRPPP ,0,,,0 321 >> , and

2,1, =iYi , such that the following inequality holds:
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4.4.4.4. CONSERVATIVENESSCONSERVATIVENESSCONSERVATIVENESSCONSERVATIVENESS EVALUATIONEVALUATIONEVALUATIONEVALUATION ANDANDANDAND
EXPERIMENTALEXPERIMENTALEXPERIMENTALEXPERIMENTAL RESULTSRESULTSRESULTSRESULTS

The inequality (12) in Theorem is affine in the system matrices

and feedback gain K. The solver of Matlab is not directly applied

to solve the non-linear matrix inequality. We decompose the

condition (12) as the followings (13.1)+(13.2).
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The LMI (13.1) is solved by the solver of Matlab under the
constraint (13.2). For the prescribed scalar 0>γ , and a

conservativeness index ]1,0[∈ε , we applied the Theorem 2 to

obtain the maximum value of the delay h.

For convenient computation, the optimization problem is

formulated as

0
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)2.13(),1.13(..

/1min
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εγ
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Example 1. We consider the following system[1]:
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2B , [ ]010 =C , 1.02 =D ,

5.0)(,)(0 =≤≤≤ dtht ττ ̇ .

The LMI of Theorem 2 can be used to find the maximum value

of h for which a state-feedback controller stabilizes the system.

For 31.0=ε , we obtained that 1=h , and a minimum value
of 12.4=γ with a corresponding gain ]010[−=K . For

another 1.0=ε , a value of 9.0=h , 1.2=γ was achieved.

For 95.0=ε , an upper delay 9.0=h , and a minimum value
of 86.1=γ were achieved. We will have better results in cost

of conservatism raising.

5.5.5.5. CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION

In this paper, we utilize the descriptor system approach for time-

varying systems. The conservatism of asymptotic stability

condition is analysed on both delay-dependent and delay-

independent methods. The delay-dependent stability condition is

less conservative than delay-independent stability condition. We

introduce the conservativeness index to denote the conservatism

between delay-dependent and delay-independent condition. The
general results with the conservativeness index on ∞H
performance analysis are presented for time-delay systems. This

method links delay-dependent condition with delay-independent

condition. So, it is convenient to compute the maximum value of

delay and optimal performances for time-varying delay systems,

or systems with various size of delay. The experimental results of

numeral example show that the new method is effective.
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