
A Comparison of Functional and Imperative Programming Techniques for

Mathematical Software Development

Scott Frame and John W. Coffey

Department of Computer Science

University of West Florida

Pensacola, FL. 32514

ABSTRACT

Functional programming has traditionally been considered

elegant and powerful, but also somewhat impractical for

ordinary computing. Proponents of functional programming

claim that the evolution of functional languages makes their use

feasible in many domains. In this work, a popular imperative

language (C++) and the leading functional language (Haskell)

are compared in a math-intensive, real-world application using a

variety of criteria: ease of implementation, efficiency, and

readability. The programming tasks that were used as

benchmarks involved mathematical transformations between

local and global coordinate systems. Details regarding the

application area and how language features of both languages

were used to solve critical problems are described. The paper

closes with some conclusions regarding applicability of

functional programming for mathematical applications.

1. INTRODUCTION

Imperative programming performs computation as a

sequence of statements that manipulate stored data until a

desired result is achieved. The functional style of

programming, in contrast, represents programs as

relationships between mathematical expressions which

are based on dependencies. Functional programming has

been described as powerful and expressive, yet it has

never achieved the success and widespread use of

imperative programming. An impediment to the growth of

functional programming is that many tasks are most

naturally attacked by imperative means and cannot be

represented as readily in a functional manner. Some

functional languages include imperative constructs. These

inclusions compromise the functional model, but allow

the imperative tasks to be accomplished through the most

direct means. In other cases imperative languages have

been equipped with some functional tools to make them

more expressive.

Functional language advocates argue that functional

languages have evolved substantially over the years,

making them suitable for a broader range of tasks. For

example, one key improvement is the advent of the

monad, a programming construct that allows developers

to produce code which interfaces easily with the outside

world in a sequential manner while preserving a distinct

separation between purely functional code and I/O tasks.

This development and other advances in functional

language design have led advocates in the functional

programming community to claim that modern functional

languages are as well equipped to deal with real-world

programming tasks as any popular imperative language

[1]. This work seeks to examine this claim by evaluating

the benefits and drawbacks of imperative and functional

programming in a side-by-side comparison on a

mathematical application.

The remainder of this paper contains a description of the

implementation of world coordinate system

transformations for time-space-position information

(TSPI) in both imperative and functional languages. C++

was used as the imperative language and Haskell [2] was

used as the functional language. The two languages are

compared using a variety of criteria: ease of

implementation, runtime efficiency, readability and

correctness. Issues pertaining to data types, language

constructs employed in local and global conversions,

useful features, and performance are analyzed.

2. THE PROBLEM AREA: COORDINATE SYSTEM

TRANSFORMATIONS

The programming task involved the implementation of

world coordinate system transformations for time-space-

position information (TSPI). Positional information can

be represented in a variety of ways, each representation

having particular applications for which it is useful. These

coordinate systems can be global or local. The most

useful coordinate systems for global positioning are the

geocentric (earth-centered, earth-fixed, rectilinear) system

and the geodetic (latitude, longitude, height) system. The

Global Positioning System (GPS) uses the geocentric

system internally, although most GPS devices display or

report coordinates in a geodetic format, which is easier for

humans to read and understand. The most common local

systems are the rectilinear topocentric system and the

angular topocentric system. The angular topocentric

system provides positional information in the form of

azimuth, elevation and range values with respect to a

fixed origin; this is the format most radar systems use to

report the location of radar tracks. Local rectilinear

systems are also very useful for representing entities near

a fixed origin or range center.

Implementation of the various conversions involves

trigonometry, linear algebra and iterative estimation. TSPI

transformations provide a reasonable application area in

which to compare the mathematical capabilities of the two

programming paradigms. It does not seem to favor either

one of the languages considered in any important manner.

The coordinate transformations are the focus of the

comparison, and consequently I/O tasks and user

interaction are not considered in the current study.

Iteration is not extensive in the calculations, which at first

may seem to remove an aspect that can be challenging to

implement functionally. However, with the modern

functional tools that Haskell provides to recurse through

lists and to implement list comprehensions, iteration is not

a significant issue.

Data Types

An important concern in any programming language is

the way in which data is represented. In C++, as with any

imperative, object-oriented language, the class is the most

basic construct used to create data types. In Haskell, the

algebraic data type is the most relevant language construct

for the current problem. Algebraic data types possess

some characteristics of structures, enumerations and

unions from C. These types can be defined in more than

one way; if defined using “record syntax” the definition

looks similar to a C struct, and automatically creates

accessor functions for each component. To use the

accessor, which is actually just a normal Haskell function,

a value of that type is passed to it.

Although this mechanism appears strange from an

imperative programming perspective, it is not drastically

different from a class accessor function in an object-

oriented language. Algebraic data types can be used to

create representations of each coordinate system. Classes

are typically defined in the C++ implementation. These

various data types are passed into conversion functions

and the components of each type are manipulated to

obtain a transformation to a new type. The use of

compound data types in both languages eliminates the

need to pass multiple arguments into each conversion

function and provides type-checking for added safety.

Local Conversions

Transformations between local systems are the simplest

of the conversions. They require only basic trigonometric

operations. Conversions from a rectilinear (east, north,

up) system to an angular (azimuth, elevation, range)

system are illustrative. The azimuth and elevation values

are vector angles and the range is the vector magnitude.

The C++ version calculates the range value first since it

is used in the calculation for elevation later. In the

Haskell implementation, the local variables in a where

clause are calculated based on dependency, not sequence,

since the range calculation is listed after the

elevation calculation. Therefore, statement order does

not matter.

Another difference between the two implementations was

found in the treatment of a conditional. An if statement

in the C++ source was replaced in the Haskell

implementation with an additional function application to

handle either alternative. Although they exist in Haskell,

if statements are rarely used. A preferred technique for

this sort of selection is a feature called a guard (indicated

by a vertical bar), which uses pattern matching to select

between available options. Guards lead to more readable

code in many cases.

Global Conversions

Transformations between global systems are more

involved. The geocentric system is the easier of the two

with regard to computations, but the geodetic system is

usually much more useful from a user standpoint.

Geodetic coordinates are an angular projection onto an

ellipsoidal model of the earth, which is most closely

approximated by an oblate spheroid. The geodetic

characteristics of the earth are obtained by surveying; the

most widely used geodetic system is the 1984 World

Geodetic System [3] which defines the ellipsoidal

characteristics of the earth with two parameters: the semi-

major axis (a), and the inverse flattening (1/f). These

constants and other parameters derived from these values

are used to perform conversions between the geocentric

and geodetic systems.

The conversion from geodetic to geocentric was a

straightforward set of trigonometric statements; the

imperative and functional implementations looked

similar. The inverse conversion, from geocentric to

geodetic was more interesting. This conversion was

achieved by estimation, and there are numerous iterative

approaches used to perform this calculation [4]. The

approach used here is known as the Hirvonen and Moritz

iterative method, which initially sets the height to 0, and

uses this value to calculate an initial estimate for latitude.

The radius of curvature in the prime vertical, height above

ellipsoid (HAE), and the geodetic latitude are then

continually refined until the maximum error between

successive iterations of height calculations is less than a

predetermined acceptable limit.

In the imperative approach, three variables (lat, hae,

and primeVerticalRadiusOfCurvature) are

continually refined in a do .. while loop. Since the

algorithm for this estimation is inherently sequential by

nature, it seemed that the conversion might be difficult to

implement in a functional manner. In Haskell, the

conversion was achieved by using a potentialy infinite

recursive list comprehension, a novel idea in functional

languages. The first three statements of a where clause

were used as inputs to a function named

hirvonenMoritzIteration which performed the

iterative estimation and returned a tuple containing the

height and latitude values. List comprehensions use

generator expressions to define successive elements of a

list, and because Haskell is a pure, lazy functional

language, the list elements are not produced until they are

evaluated.

Two functions, computeHae and computeLat were

straightforward calculations that depend on the previous

values of latitude and height. The computation required

three list comprehensions: HaeList, HaeLat, and

HaeLatList. The HaeLatList defines its first

element and then recursively defines all successive

elements based on that first element, using the first

element as input into the computeHae and

computeLat functions. The result is a list of tuples

containing the height and latitude values, with each

successive tuple refining one of the two values. The

HaeList and HaeLat extract the respective values

from every other entry and then the HmList zips up

these two lists into tuples at each iteration so that each

tuple is a refinement of the height and latitude.

The final task is to scan the HmList to determine when

the error between successive iterations is small enough to

stop. This is achieved with a recursive function

findEstimate with two pattern guards. The first

pattern guard specifies that as long as the difference

between the new height and previous height is greater

than the altitudeLimit and a certain number of

iterations has not been exceeded, findEstimate is

called recursively; when finished findEstimate

returns the tuple containing the final approximation of the

height and latitude.

Local-to-Global and Global-to-Local Conversions

When converting from a local system to a global system

or vice-versa, the conversion involves the application of a

rotation matrix to the input vector to achieve a translation

to the target system. This rotation matrix is built using the

origin for the local system. The creation of matrix data

types allows for convenient passing of data and

computation. Three-by-three and three-by-one matrix data

types are needed for the calculations. They are obtained in

the C++ implementation with classes and in the Haskell

implementation with algebraic data types. With the matrix

types in place, building a rotation matrix looks very

similar in the two frequently quite different paradigms.

For velocity and acceleration translation, only the rotation

must be performed. For positional transformations, the

positional offset between the global system and the local

system origin must also be resolved. For the C++

implementation, it makes sense to allow the user of the

function to supply a rotation matrix independently from

the origin if desired. This way the rotation matrix can be

stored for repeated conversions without having to rebuild

it each time the conversion is performed. Also in the C++

implementation, the matrix classes can easily be equipped

with overloaded arithmetic operators for convenient and

readable arithmetic operations. For a local to global

conversion, the transpose of the rotation matrix must be

multiplied with the input vector. The Haskell

implementation is similar, except the rotation matrix is

built within a function. In place of the overloaded

operator in the C++ version is a transposeMultiply

operation in Haskell. For the global to local conversion,

the relationships are reversed. Instead of multiplying the

transpose, the regular rotation matrix is multiplied with

the positional-offset-adjusted vector.

3. RESULTS OF THE STUDY

This section contains a summary of the results obtained in

the comparison of the two implementations. Comparisons

were made pertaining to relative ease of use and runtime

performance.

Ease of Use

The software engineer who implemented the programs

succeeded in creating all the conversions in both

programming languages. As alluded to before, different

language constructs, as summarized in Table 1, were

used, but in many cases, the code looked similar.

Readability might be an initial issue for programmers

lacking a functional programming background, but it is

anticipated that this issue would quickly recede. The

functional nature of Haskell ensures that potential sources

of errors such as an incorrect ordering of statements when

one variable depends on computation of another inside a

loop, is not an issue. The implementation of the functions

pertaining to Position were analyzed to compare the

lines of code needed. An open source tool named

SLOCCount [5] was used. The C++ code required 962

lines and the Haskell implementation required 173 lines.

Table 1. A Comparison of Language Features used in

the Current Study.

Language Selectors Iterators Data

Types

Matrix

Operations

C++ If ..

else,

switch

do .. while

while, for
Classes Operator

overloading

Haskell Guards

and
pattern

matching

List

comprehensions,
guards, and

recursion

Algebraic

data
types

Function

application

Performance

Both the C++ and Haskell code were executed on a

2.0Ghz, Intel Core 2 processor running Ubuntu 10.10.

Both the C++ and the Haskell were natively compiled,

with g++ and the Glasgow Haskell Compiler [6]

respectively. Table 2 contains results of various

conversions showing the ratio of Haskell to C++

performance. For instance, the conversion of geocentric to

Geodetic (geocentToGeodetic) took 32.7 times as long to

execute in Haskell as in C++. Overall, the Haskell

required 30 to 70 times longer than the C++ to execute.

No particular performance problems were noted in the

routines that required iteration.

Table 2. Performance Comparisons on various

conversion functions.

Function Ratio Function Ratio
geocentToGeodetic 32.7:1 geodetToGeocen 35.9:1

geocentToRectilinLocal 65.6:1 geodetToRectilinLoc 50.6:1

geocentToAngLocal 48.7:1 geodetToAngLoc 45.6:1

rectilinLocToGeocen 69.5:1 angLocToGeocen 56.1:1

rectilinLocToGeodet 48.4:1 angLocToGeodetic 42.1:1

rectilinLocToAngLoc 25.5:1 angLocToRectiLoc 40.2:1

4. CONCLUSIONS

The goal of this work was to determine the usefulness of

functional programming in a math-intensive real-world

problem and to provide a comparison with imperative

programming. This study focuses on the implementation

of coordinate system conversion routines, but also seeks

to examine the ease of implementation and the usability

of the languages being compared. With regard to the

development of the conversion routines, the imperative

and functional implementations employed different

features, but each achieved the objective and neither

seemed ill-equipped for the task. Some of the functional

programming constructs and language features might

seem unfamiliar to a programmer coming from the

procedural programming world, but the functional

program source code was a small fraction of the size of

the procedural program. Furthermore, several ease-of-use

aspects were identified: guards for selection and the lack

of need to consider statement sequence in Haskell

simplified implementation. With regard to performance,

the procedural language was far more efficient, even

though the functional program was natively compiled. In

real-time applications, the performance differential could

be critical, but in less time-critical applications, the

functional language performance is satisfactory. Overall,

while it might be concluded that the functional approach

has many elegant, highly expressive features that

potentially simplify software development, the

performance deficiencies probably limit applicability of

functional programming languages generally for

mathematically intensive applications.

5. REFERENCES

[1] Meijer, E. (2007). Confessions of a Used

Programming Language Salesman. Proceedings Of

the 22nd annual ACM SIGPLAN conference on

Object-oriented programming systems and

applications, 677-694.

[2] Stewart, D. (2009). Real World Haskell. Sebestapol,

CA: O'Reilly Media, Inc.

[3] Torge, W. (2001). Geodesy. Berlin, Germany: Walter

de Gruyter GmbH & Co.

[4] Burtch, R (2006). A Comparison of Methods used in

Rectangular to Geodetic Coordinate Transformations.

Orlando, FL: 2006 ACSM Annual Conference and

Technology Exhibition

[5] Wheeler, D. (2004). SLOCCount.

http://www.dwheeler.com/sloccount/

[6] GHC. (2011). The Glasgow Haskell Compiler.

http://www.haskell.org/ghc/

