
Solving Two Sided Incomplete Information
Games with Bayesian Iterative Conjectures
Approach
Teng, Jimmy*
Abstract:
This paper proposes a way to solve two (and multiple)

sided incomplete information games which generally generates
a unique equilibrium. The approach uses iterative conjectures
updated by game theoretic and Bayesian statistical decision
theoretic reasoning. Players in the games form conjectures
about what other players want to do, starting from first or-
der uninformative conjectures and keep updating with games
theoretic and Bayesian statistical decision theoretic reasoning
until a convergence of conjectures is achieved. The resulting
convergent conjectures and the equilibrium (which is named
Bayesian equilibrium by iterative conjectures) they supported
form the solution of the game. The paper gives two exam-
ples which show that the unique equilibrium generated by this
approach is compellingly intuitive and insightful. The paper
also solves an example of a three sided incomplete information
simultaneous game.
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1. INTRODUCTION
Solving a two sided incomplete information games using

current prevailing games theory based upon Nash equilibrium
would be a daunting task. There are typically too many equi-
libriums. Generally, the game has to be simplified to make
analysis possible. Consequently, there are not many game
theoretic research with two sided or multiple sided incomplete
information.1 However, real life situations involving strate-
gic interactions abound with two sided or multiple sided in-
complete information. Hence, there is a strong need for an
approach that could solve such games more generally and gen-
erate lesser or even a unique equilibrium. It is to this task that
this paper devotes itself to.
Given the definition of Nash equilibrium, the current pre-

vailing games theory solves a game by asking which combi-
nations of strategies constitute an Nash equilibrium. Implicit
in such an approach is that agents know the strategies played
by the others and they also know which equilibrium they are
in. In contrast, the Bayesian iterative conjectures approach
proposed by this paper solves a game by assuming that the
agents have no idea about the actions or strategies adopted or
to be adopted by other agents neither do they have any idea on
which equilibrium they are in. Therefore, the Bayesian updat-

1For examples, see [ 2, 3], [5, 6] and [8].

ing process starts with first order uninformative conjectures
(or prior probability distribution functions) on the action or
strategy of the other agents. The agents then keep updating
their conjectures with game theoretic and Bayesian statistical
decision theoretic reasoning until a convergence of conjectures
is achieved.2

Given its ability to narrow down the number of equilibrium
normally to one, the BEIC approach is useful for solving games
with multiple side incomplete information, multiple hetero-
geneous players and multiple decision variables. This paper
focuses on illustrating the use of BEIC on solving two sided
incomplete information games, though the paper also contains
an example of a three sided incomplete information game.
From the algorithmic point of view, the rationale to start

with first order non informative conjecture is to let the game
solves itself and selects its own equilibrium strategies and con-
jectures, rather than having the equilibrium and its strategies
and conjectures being imposed or affected by the informative
first order conjectures of the agents. Selten and Harsanyi [4]
propose a tracing procedure to select the most reasonable equi-
librium among multiple Nash equilibriums. Their tracing pro-
cedure starts with first order non informative conjectures too
and is quite similar to the approach of this paper. However,
the approach of this paper does not start its tracing with only
Nash equilibriums. It starts with all possible actions or strate-
gies of the players. This is ensured through the enforced use
of first order uninformative conjectures.
The BEIC approach differs from the current Nash Equilib-

rium based approach in several ways. First is that the BEIC
approach achieves consistency with other major solution con-
cepts while the equilibrium results of current Nash Equilibrium
games theory sometimes contradict those derived through
backward induction or iterative elimination of (weakly) dom-
inated strategies. Second is that the current prevailing Nash
Equilibrium games theory solves for equilibriums by construct-
ing reaction functions and looks for their intersections. In con-
trast, the BEIC approach constructs reaction functions but
uses first order uninformative conjectures and reaction func-
tions to derive higher and higher orders of conjectures until
a convergence of conjectures is achieved. Thirdly, Irational-
ity in the processing of information and forming of predictions
is the very foundation of the BEIC while the Nash Equilib-
rium based approach starts without defining rationality in the
processing of information and forming of conjectures or predic-
tion. The Nash equilibrium approach incorporates rationality
in the processing of information and forming of predictions in
an ad hoc manner latter through Perfect Bayesian Equilib-
rium and its many refinements. Fourth is that the Nash equi-
librium approach defines equilibrium in the strategic/actions
space while the BEIC approach defines equilibrium in the sub-
jective probability space with its use of convergence of conjec-
tures. Needless to say, for conjectures to converge, they must

2Refer to [7].



also be consistent with the equilibrium they supported and so
the BEIC’s equilibrium in subjective probability space natu-
rally incorporates equilibrium in strategic/action space as well.
Fifth is that the BEIC is based on the Bayesian view of subjec-
tive probability which allows the tracing of updating of con-
jectures from first order uninformative conjectures to higher
and higher order of conjectures and till convergence while the
Nash equilibrium based approach largely sticks to the classical
or frequentist view of probability (and in sequential games of
incomplete information with pooling equilibriums, the use of
off equilibrium beliefs is an exception that resort to subjective
probability.)
Section 2 presents an example of two sided incomplete in-

formation simultaneous game. Section 3 solves an example
of two sided incomplete information sequential game. Section
4 gives an example of a three sided incomplete information
simultaneous game. Section 5 concludes the paper.
2. TWO SIDED INCOMPLETE INFORMATION

SIMULTANEOUS GAME
Example 1. Investment Entry Game.
Consider again the following investment entry game. Firm

1 is the incumbent. Firm 2 is the potential entrant. Both
firm 1 and firm 2 have two types, high investment cost or low
investment cost. The probability that firm 1 is of the high cost
type is 14 and the probability that firm 2 is the high cost time
is 1

10 and these probabilities are independent of each other.
When the high investment cost firm 1 faces the low invest-

ment cost firm 2 they have the following payoff matrix:
1\2 Enter (y) Refrain (1-y)

Modern (w) 0,−2 7, 0
Antique (1-w) 4, 2 6, 0

(There are three Nash equilibriums: (Antique, Enter),
(Modern, Refrain), (w = 1 for y < 1/5, w ∈ [0, 1] for y = 1/5
and w = 0 for y > 1/5; y = 1 for w < 1/2, y ∈ [0, 1] for
w = 1/2, y = 0 for w > 1/2).)
When the high cost firm 1 faces the high cost firm 2 they

have the following payoff matrix:
1\2 Enter (z) Refrain (1-z)

Modern (w) 0,−5 7, 0
Antique (1-w) 4, 1 6, 0

(There are three Nash equilibriums: (Antique, Enter),
(Modern, Refrain), (w = 0 for z > 1

5 , w ∈ [0, 1] for z = 1
5 and

w = 1 for z < 1
5 ; z = 0 for w >

1
6 , z ∈ [0, 1] for w = 1

6 , z = 1
for w < 1

6 .)
If the low investment cost firm 1 encounters the low cost

firm 2, then they have the following payoff matrix:
1\2 Enter (y) Refrain (1-y)

Modern (x) 3,−2 7, 0
Antique (1-x) 4, 2 6, 0

(There are three Nash equilibriums: (Antique, Enter),
(Modern, Refrain), (x = 1 for y < 1/2, x ∈ [0, 1] for y = 1/2
and x = 0 for y > 1/2; y = 1 for x < 1/2, y ∈ [0, 1] for x = 1/2,
y = 0 for x > 1/2).)

If the low investment cost firm 1 encounters the high invest-
ment cost firm 2, then they have the following payoff matrix:

1\2 Enter (z) Refrain (1-z)
Modern (x) 3,−5 7, 0
Antique (1-x) 4, 1 6, 0
(There are three Nash equilibriums: (Antique, Enter),

(Modern, Refrain), (x = 1 for z < 1/2, x ∈ [0, 1] for z = 1/2
and x = 0 for z > 1/2; z = 1 for x < 1/6, z ∈ [0, 1] for x = 1/6,
z = 0 for x > 1/6).)
The reaction functions of the respective types of firm 1 and

firm 2 are:
I.
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The solution of the Bayesian iterative conjectures approach
is presented below. In the table below, the first row identifies
the respective probabilities (w, x, y and z) and the second
row gives the first order uninformative conjectures (which are
w = 0.5, x = 0.5, y = 0.5 and z = 0.5) and the later rows give
second and higher order conjectures.

order\probabilities w x y z
1 0.5 0.5 0.5 0.5
2 0 0.5 0.5 0
3 0 1 1 1
4 0 0 1 1
5 0 0 1 1
So the Bayesian equilibrium by iterative conjectures is w =

0, x = 0, y = 1, z = 1.3. 3.
3. TWO SIDED INCOMPLETE INFORMATION

SEQUENTIAL GAME WITH PERFECT INFOR-
MATION
Example 2: Extended Beer-Quiche Game.
The game in Figure 1 is an extension of the famous beer-

quiche game. The left hand side of the game is the original
beer-quiche game. In the above game, there are two types of
senders, wimpy and surly, and two types of receivers, bully and
patrollers. The probability of wimpy is 0.1 and the probability
of surly is 0.9. The bully type enjoys picking on the wimpy
type. The patroller type, on the other hand, has the duty of
challenging the surly type when the surly orders beer and only
if the surly orders beer. However, if the patroller challenges
the wimpy, the patroller is humiliated. The probability of
bully is 0.1 and the probability of patroller is 0.9. The above
game would have many equilibriums if solved by the perfect
Bayesian equilibrium approach.
The Bayesian iterative conjectures approach solution is pre-

sented below:
Let the probability that the bully plays duels when Beer is

observed be u, the probability that the bully plays duels when
Quiche is observed be v, the probability that the patroller plays
duels when Beer is observed be s and the probability that the
patroller plays duels when Quiche is observed be t. Please note
that when Quiche is observed, the patroller has the dominant
strategy of choosing No Duel and therefore t = 0.
Let the probability that the surly plays Beer be x and the

probability that the wimpy plays Beer be y.
Given u, v, s and t, the surly chooses beer if
(0.1) [u+ 3 (1− u)] + (0.9) [s+ 3 (1− s)] > (0.1) 2 (1− v) +

(0.9) 2 (1− t)
3− (0.2)u− (1.8) s > 2− (0.2) v − (1.8) t
1 > (0.2)u+ (1.8) s− (0.2) v − (1.8) t
1 > (0.2) (u− v) + (1.8) (s− t) z 5

The above is the combination of [u+ 3 (1− u)− 2 (1− v)] >
0 and [s+ 3 (1− s)− 2 (1− t)] > 0 and weighted by 0.1 and
0.9.

Given u, v, s and t, the wimpy chooses beer if
(0.1) [2 (1− u)] + (0.9) [2 (1− s)] > (0.1) [v + 3 (1− v)] +

(0.9) [t+ 3 (1− t)]
2− (0.2)u− (1.8) s > 3− (0.2) v − (1.8) t
(0.2) v + (1.8) t− (0.2)u− (1.8) s+ > 1
(0.2) (v − u) + (1.8) (t− s) >

1z 6
The above is the combination of [2 (1− u)− v − 3 (1− v)] >

0 [2 (1− s)− t− 3 (1− t)] > 0 and weighted by 0.1 and 0.9.
When observed Beer the bully plays
No Duel if (−1) (x) ¡ 910¢+ (1) (y) ¡ 110¢ < 0
is indifferent if (−1) (x) ¡ 910¢+ (1) (y) ¡ 110¢ = 0
Duel if (−1) (x) ¡ 910¢ + (1) (y)
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When observed Quiche the bully plays
No Duel if (−1) (y) ¡ 910¢+ (1) (x) ¡ 110¢ < 0
is indifferent if (−1) (y) ¡ 910¢+ (1) (x) ¡ 110¢ = 0
Duel if (−1) (y) ¡ 910¢ + (1) (x)
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0z 8
When observed Beer the patroller plays
Duel if (1) (x)
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is indifferent if (1) (x)
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+ (−1) (y) ¡ 110¢ = 0

No Duel if (1) (x)
¡
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10

¢
+ (−1) (y) ¡ 110¢ <

0z 9
Solving by the BEIC approach:
order\probability u v s t x y
1 0 0.5 0.5
2 0 0 1 0
3 0 0 0
4 0 0 1 0
5 0 0 0
The process therefore converges here with u = 0, v = 0, s =

1, t = 0, x = 0 and y = 0. Given the high probability of meet-
ing the patroller, the surly chooses quiche. Consequently, the
wimpy chooses quiche both for impersonating as the surly to
avoid being challenge by the bully and for his intrinsic prefer-
ence for quiche. The bully chooses not to duel when observed
quiche since the probability of meeting the surly is high (0.9).
Note that off-equilibrium beliefs as in perfect Bayesian equi-
librium reasoning is not needed in the BEIC solution. Again,
the resulting equilibrium seems intuitive and compelling.
4. THREE SIDED INCOMPLETE INFORMA-

TION GAME
The method introduced in the previous sections could be ex-

tended into three or more sided incomplete information games.
This section gives an example of a three sided incomplete in-
formation simultaneous game.
There are three firms simultaneously decide to enter and

produce in a market or refrain from entering. Both firm 1, 2
and 3 has two types, type a or type b. Let the probability of
1a be 0.5 and the probability of 1b be 0.5, 2a be 0.5 and the
probability of 2b be 0.5 and, 3a be 0.5 and the probability of
3b be 0.5. The payoff matrixes are as follow:





1a\2a Enter Withhold
Enter −1;−2;−20 (20) ; (0) ; (1)
Withhold (0) ; (10) ; (1) 0; 0, (5)

(3a Enter)

1a\2a Enter Withhold
Enter (20) ; (10) ; (0) (100) ; 0; 0
Withhold 0; (50) ; 0 0; 0; 0

(3a Withhold)

1a\2a Enter Withhold
Enter −1,−2,−40 (20) , (0) , (0.5)
Withhold (0) , (10) , (0.5) 0, 0, (2.5)

(3b Enter)

1a\2a Enter Withhold
Enter (20) , (10) , (0) (100) , 0, 0
Withhold 0, (50) , 0 0, 0, 0

(3b Withhold)

1a\2b Enter Withhold
Enter −1;−2;−20 (20) ; (0) ; (1)
Withhold (0) ; (20) ; (1) 0; 0, (5)

(3a Enter)

1a\2b Enter Withhold
Enter (20) ; (20) ; (0) (100) ; 0; 0
Withhold 0; (50) ; 0 0; 0; 0

(3a Withhold)

1a\2b Enter Withhold
Enter −1,−2,−40 (20) , (0) , (0.5)
Withhold (0) , (20) , (0.5) 0, 0, (2.5)

(3b Enter)

1a\2b Enter Withhold
Enter (20) , (20) , (0) (100) , 0, 0
Withhold 0, (50) , 0 0, 0, 0

(3b Withhold)

1b\2a Enter Withhold
Enter −1;−2;−20 (50) ; (0) ; (1)
Withhold (0) ; (10) ; (1) 0; 0, (5)

(3a Enter)

1b\2a Enter Withhold
Enter (50) ; (10) ; (0) (100) ; 0; 0
Withhold 0; (50) ; 0 0; 0; 0

(3a Withhold)

1b\2a Enter Withhold
Enter −1,−2,−40 (50) , (0) , (0.5)
Withhold (0) , (10) , (0.5) 0, 0, (2.5)

(3b Enter)

1b\2a Enter Withhold
Enter (50) , (10) , (0) (100) , 0, 0
Withhold 0, (50) , 0 0, 0, 0

(3b Withhold)

1b\2b Enter Withhold
Enter −1;−2;−20 (50) ; (0) ; (1)
Withhold (0) ; (20) ; (1) 0; 0, (5)

(3a Enter)

1b\2b Enter Withhold
Enter (50) ; (20) ; (0) (100) ; 0; 0
Withhold 0; (50) ; 0 0; 0; 0

(3a Withhold)

1b\2b Enter Withhold
Enter −1,−2,−40 (50) , (0) , (0.5)
Withhold (0) , (20) , (0.5) 0, 0, (2.5)

(3b Enter)

1b\2b Enter Withhold
Enter (50) , (20) , (0) (100) , 0, 0
Withhold 0, (50) , 0 0, 0, 0

(3b Withhold)

The Nash Equilibriums (pure strategy) are:
(Enter, Enter; Enter, Enter; Withhold, Withhold)
(Enter, Enter; Withhold, Withhold; Enter, Enter)
(Withhould, Withhold ; Enter, Enter; Enter, Enter)

In contrast, the BEIC approach gives a compelling unique
equilibrium. Solving by the BEIC approach:
Let the probability that 1a enters be a and withholds be

1− a.
Let the probability that 1b enters be b and withholds be

1− b.
Let the probability that 2a enters be c and withholds be

1− c.
Let the probability that 2b enters be d and withholds be

1− d.
Let the probability that 3a enters be e and withholds be

1− e.
Let the Probability that 3b enters be f and withholds be

1− f.
The reaction functions are constructed as usual and are left

out for brevity.
The process of conjectures is:
\ a b c d e f
1 0.5 0.5 0.5 0.5 0.5 0.5
2 1 1 1 1 0 0
3 1 1 1 1 0 0
The unique BEIC is (Enter, Enter; Enter, Enter; Withhold,

Withhold).
5. CONCLUSIONS
At a more fundamental level, the approach expounded in

this paper raised the question: Is current concept of rationality
in games theory complete without defining rationality in the
processing of information and forming of conjectures?3 The
approach in this paper is an attempt to fill in this gap.
The approach traces how the conjectures of a rational player

change and converge. A rational player here means that he is
rational by both the definitions of rational in games theory
and Bayesian statistical decision theory. The rational player
forms his conjectures about how the game will be played by
using all available information about the game and starting
from first order uninformative conjectures and keeps updating
with game theoretic and Bayesian statistical decision theoretic
reasoning till a convergence in conjectures is achieved. He then
acts rationally given his convergent conjectures.
As shown in the above examples, the Bayesian iterative

conjectures approach allows two sided incomplete information
games to be analyzed in a general way that avoids the gener-
ation of multiple equilibriums. The unique equilibrium gen-
erated in both examples are compellingly insightful and intu-
itive.
Much remains to be done. The next step is to use the ap-

proach to analyze two sided incomplete information games
with continuous action space and multiple sided incomplete
information games with discrete and continuous action space.
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