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ABSTRACT 

Vertex coloring of a graph is the assignment of labels to the 
vertices of the graph so that adjacent vertices have different 
labels. In the case of polyhedral graphs, the chromatic 
number is 2, 3, or 4. Edge coloring problem and face 
coloring problem can be converted to vertex coloring 
problem for appropriate polyhedral graphs. 

We have been developed an interactive learning system of 
polyhedra, based on graph operations and simulated 
elasticity potential method, mainly for educational purpose.  

In this paper, we introduce a learning subsystem of vertex 
coloring, edge coloring and face coloring, based on 
minimum spanning tree and degenerated polyhedron, which 
is introduced in this paper. 
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1. INTRODUCTION 

Vertex coloring of a graph is the assignment of labels to the 
vertices of the graph so that adjacent vertices have different 
labels [1-3]. The 4-colour theorem proved by Appel and 
Haken in 1977, indicates that every planar graph is 
4-colourable. Every polyhedral graph is 3-connected planar 
graph, according to the theorem by Steinitz. Therefore, it is 
also 4-colourable. Consequently, the chromatic number of a 
polyhedral graph is 2, 3, or 4. There are various coloring 
methods, for example, greedy coloring algorithm, 
sequential coloring algorithm, distributed algorithm, 
decentralized algorithm, and so on. Determination of 
2-colourability is equivalent to testing bipartiteness, 
therefore, it is computable in linear time. However, in the 
case of more than 2 coloring, the computational complexity 
is known to be NP-complete, even for 3-colourability [4], 
and 4-colourability [5]. 

The author has been developed an interactive learning 
system of polyhedra, based on graph operations and 
simulated elasticity potential method, mainly for 
educational purpose [6-10]. By using this system, the user 
or the learner can make and handle various polyhedra, 
including Platonic solids, Archimedean solids [9], 
Kepler-Poinsot solids [7], fullerenes molecular structures, 
and geodesic dome constructions. 

In this paper, we introduce a learning subsystem of 
interactive vertex coloring, edge coloring, and face coloring, 
based on minimum spanning tree and degenerated 
polyhedron. Vertex coloring of polyhedral graph itself is 
trivial in a mathematical sense, and it is not novel also in a 
practical sense. However, visibility and interactivity can be 
helpful for the user to understand intuitively the 
mathematical structure and the computational scheme, by 
visualizing the process of the calculation, and by allowing 
the user to contribute the computation. 

2. POLYHEDRON MODELING SYTEM 

In this section, we summarize the system of interactive 
modeling of polyhedra described in [6-10]. It consists of 
three subsystems: graph input subsystem, wire-frame 
subsystem, and polygon subsystem. 

2.1 Graph Input Subsystem 

Figure 1(a) shows a screen shot of graph input subsystem, 
where a graph isomorphic to truncated icosahedrons is 
drawn. The first step of the modeling of polyhedron is 
drawing a polyhedral graph isomorphic to the intended 
polyhedron. In the subsystem, vertex addition, vertex 
deletion, edge addition, and edge deletion are implemented 
as fundamental operations. Some additional utilities are also 
implemented such as grid lines, grid snapping, vertex 
coloring according to degrees, and so on. 

2.2 Wire-Frame Subsystem 

Figure 1(b) shows a screen shot of wire-frame subsystem. 
After constructing a polyhedral graph the next step is 
arranging vertices in 3D space with virtual springs and 
Hooke’s law. Wire-frame polyhedron can be formed by 
controlling the natural length of virtual spring 
corresponding to three types of binary relations between 
pairs of vertices. 

2.3 Polygon Subsystem 

Figure 1(c) shows a screen shot of polygon subsystem. 
After arranging vertices in 3D space, the last step is 
detecting faces, selecting appropriate faces, and rendering 
the solid. Detecting n-polygon is equivalent to finding 
simple closed path with length n. Some additional utilities 
such as opening faces, meshed faces are implemented. 



          
(a)                                  (b)                                   (c) 

Figure 1. Screen shots of Interactive Polyhedron Modeling System. 
(a) Graph input subsystem, (b) Wire-frame subsystem, and (c) Polygon subsystem. 

                     
(a)                              (b)                               (c) 

Figure 2. Three Graph Operations. 
(a) Vertex splitting, (b) Edge contraction, and (c) Diagonal addition. 
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Figure 3. Relations of 5 Platonic graphs and 13 Archimedean graphs using 3 operations. 

2.4 Graph Operation for Polyhedral Graph 

Three graph operations are defined for polyhedral graphs: 
vertex splitting, edge contraction, and diagonal addition 
(Figure 2) [9]. By these three operations, 5 regular 

polyhedra (Platonic solids) and 13 semi-regular polyhedra 
(Archimedean solids) are interconnected as shown in Figure 
3. By using these operations, the user can model various 
polyhedra from one seed polyhedron. 



3. ANIMATION VISUALIZATION OF VERTEX 
COLORING 

Table 1 in the next page is the complete list of regular 
polyhedra and semi-regular polyhedra. Symbols vc, ec, and 
fc are the chromatic numbers of vertex coloring, edge 
coloring and face coloring. Face coloring of a planar graph 
G is equivalent to vertex coloring of the dual of G. Edge 
coloring of a polyhedral graph G is equivalent to vertex 
coloring of the ambo of G. Ambo is one of Conway 
Polyhedron notations [10]. 

A graph G is k-colorable if and only if G is k-partite. In the 
case of polyhedral graph, k can be 2, 3 or 4. By identifying 
vertices in each part of k-partite graph, one of line segment 
(1-simplex), triangle (2-simplex), or tetrahedron 
(3-simplex) is obtained. In this paper, we call such a 
polytope generated from a polyhedron, degenerated 

polyhedron. Figure 4 shows three examples of degenerated 
polyhedra: snubdodecahedron (to tetrahedron), small 
rhombicosidodecahedron (to triangle), and great rhomb- 
icosidodecahedron (to line segment). 

The process of interactive vertex coloring is as follows. 
When the user presses the “Degenerate” button, the system 
tests the chromatic number in the order of 2, 3, and 4 
colorabilities. If the graph is k-colorable, it is partitioned to 
k-partite graph, and degenerated to one of line segment, 
triangle, or tetrahedron, with animations (Figure 5 (a-d)). 
After the user select different color for each vertex of 
degenerated polyhedron (Figure 5 (e)), when the user 
presses the “Release” button, the polyhedron recovers the 
original shape with also animations (Figure 5 (f-h)). The 
user or learner can observe how the colors are assigned to 
the vertices so that adjacent vertices have different colors, 
and also understand unconsciously that k-colorable and 
k-partite are equivalent. 

 
Figure 4. Examples of degenerated polyhedra (polytopes). 

             
(a)                    (b)                    (c)                    (d) 

             
(e)                    (f)                    (g)                    (h) 

Figure 5. An example of interactive vertex coloring (great rhombicosidodecahedron: line segment). 



4. CONCLUSION 

In this paper, interactive vertex coloring system for 
polyhedral graph has been presented. It was developed as a 
subsystem of an interactive learning system of polyhedra, 
based on graph theory. The learner can not only observe 
how the colors are assigned to the vertices, but also 
understand unconsciously that the notions of k-colorable 
and k-partite are equivalent. 
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Table 1. The list of regular polyhedra (Platonic solids) and semi-regular polyhedra (Archimedean solids). 

v, e, and f stand for the numbers of vertices, edges and faces, respectively. 
vc, ec, and fc are the chromatic numbers of vertex-coloring, edge-coloring and face-coloring. 

Symbol Name of polyhedron v e f vc ec fc 

33
P  Tetrahedron 4 6 4 4 3 4

34
P  Cube 8 12 6 2 3 3

43
P  Octahedron 6 12 8 3 3 2

35
P  Dodecahedron 20 30 12 3 3 4

53
P  Icosahedron 12 30 20 4 3 3

2(3 4)
A ⋅  Cuboctahedron 12 24 14 3 3 2

4 6 10A ⋅ ⋅  Great Rhombicosidodecahedron 120 180 62 2 3 3

4 6 8A ⋅ ⋅  Great Rhombicuboctahedron 48 72 26 2 3 3

2(3 5)
A ⋅  Icosidodecahedron 30 60 32 3 3 2

3 4 5 4A ⋅ ⋅ ⋅  Small Rhombicosidodecahedron 60 120 62 3 3 2

33 4
A ⋅  Small Rhombicuboctahedron 24 48 26 3 3 2

43 4
A ⋅  Snub Cube 24 60 38 3 3 3

43 5
A ⋅  Snub Dodecahedron 60 150 92 4 3 3

23 8
A ⋅  Truncated Cube 24 36 14 3 3 4

23 10
A ⋅  Truncated Dodecahedron 60 90 32 3 3 4

25 6
A ⋅  Truncated Icosahedron 60 90 32 3 3 4

24 6
A ⋅  Truncated Octahedron 24 36 14 2 3 3

23 6
A ⋅  Truncated Tetrahedron 12 18 8 3 3 4

 


