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Abstract—Energy management in dwellings is addressed in
this paper. The energetic impact of dwellings in the current
energetic context is first depicted. The formulation of the
global energy management problem of dwellings is defined as
an optimization problem based on a Mixed Integer Linear
Programming (MILP) algorithm. It aims at adjusting the
energy consumption to both the energy cost and the inhabi-
tant’s comfort. The available flexibilities, provided by domestic
appliances, are associated to time windows or heating storage
abilities. The energy consumption in houses is very dependent
to uncertain data such as weather forecasts and inhabitants’
activities. The paper focuses on the taking into account para-
metric uncertainties in anticipative energy management for
dwellings. Robust linear programming is implemented in order
to provide the robust energy allocation. Application example
is given.

Keywords-Building, Energy management, Robust optimiza-
tion, Uncertainties, Mixed integer linear programming.

I. INTRODUCTION

A home automation system basically consists of house-
hold appliances linked via a communication network allow-
ing interactions for control purposes [1]. Thanks to this
network, a load management mechanism can be carried
out: this is a functionality of the so-called smart home.
Load management allows inhabitants, in this paper, to ad-
just power consumption according to expected comfort and
energy price variation. For instance, during the consumption
peak periods when power plants rejecting higher quantities
of CO; are used and when energy price is high, it could be
possible to decide to delay some consumption activities by
reducing some heater set points. Load management is all the
more interesting that the availability and price of the energy
vary. It is very complex to manage by users in a dynamic
pricing context.

A building energy management system consists in two as-
pects: the load management and the local energy production
management. [2] have proposed optimal control strategies
for HVAC (Home Ventilation and Air Conditioning) systems
taking into account the natural thermal storage capacity of
buildings that shift the HVAC consumption from peak period
to off-peak period. [2] has shown that this control strategy
can save up to 10% of the electricity cost of a building. The
control temperature in buildings and more generally HVAC

is widely studied in automatic control. Nowadays, a lot of
studies promote the Model Predictive Control (MPC) for
HVAC systems [3]. MPC consists in tracking a reference
trajectory. This trajectory is the predicted thermal informa-
tion for example. The predictive approach proposed in this
paper could provide such trajectories for the MPC strategies.
However, these approaches do not take into account the
energy resource constraints, which generally depend on the
autonomy needs of off-grid systems [4] or on the total power
production limits of the suppliers in grid connected systems.

The household global load management problem is a
larger problem than HVAC control. It can be formulated
as an assignment problem in which energy is a resource
shared by appliances, and tasks are energy consumption of
appliances. A discrete optimization method of shortest path
is proposed in [5] to deal with the prediction of optimal
indoor temperature.

The generic home energy management problem as a
scheduling problem is proposed in [6]. The available electric
power at each time is a cumulative resource shared by the
appliances. The tasks are the activities requested by the
inhabitant that consume the supplied power in given time
windows. A mathematical formulation of this problem is
proposed that can be written as a Mixed Integer Linear
Program. A lot of data are assumed in this formulation such
as weather forecasts and inhabitants’ requests. An optimal
energy planning is proposed over a given planning horizon,
typically one day.

In this paper, parametric uncertainties on the data are
taken into account in order to propose robust energy plan-
ning in which a performance is guaranteed over the expected
data. The associated robust formulation which is proposed
to deal with is adapted from the Bertsimas and Sim for-
mulation proposed in [7]. Parametric uncertainties, such as
weather forecasts, are addressed through this formulation.
This formulations lead to the definition of the Robust Home
Energy Scheduling Problem.

The deterministic Home Energy Scheduling Problem is
defined in section 2. The uncertainties that the home energy
management system has to face and the robust optimization
of parametric uncertainties as well as an application example
are performed in section 3.



II. ANTICIPATIVE ENERGY MANAGEMENT PROBLEM

The Home Energy Scheduling Problem (HESP) takes as
input a set of activities called services. One can distinguish
the provider services that produce the energy resource and
the consumer services having to be processed using the
energy resource. The consumer services take place of the
activities required by the inhabitant. The energy is a cu-
mulative resource which availability and price vary from
time to time. The optimization system aims at planning
the services by finding the best compromise between the
cost of the consumed energy (to be minimized) and the
inhabitant’s satisfaction (to be maximized) under constraints
of power supply and inhabitant’s requests. The HESP is
modeled through a MILP formulation.

The consumer services are the activities required by the
inhabitants that are energy consuming. Some of them are
the tasks to be planned under the constraint of power supply
service. Several types of consumer services can be defined in
the optimization problem according to the type of involved
control. One can distinguish the permanent services to be
controlled all over the planning horizon (see section II-A)
and the timed services to be scheduled in a time window
according to the inhabitant’s requests (see section II-B). The
unsupervised service is associated to the set of activities
that cannot be planned because they are totally driven by
the inhabitants. Another segmentation is proposed in [§]
based on the number of settings of the appliances and their
automation level.

Let H = {0,...,T — 1} be the planning horizon com-
posed of T' time periods of length A. The time period A is
a data given by the variation of the resource. At every time
period k the amount of energy allocated to each service has
to be decided. The energy cost and the resource availability
are assumed to be constant over a time period A. [6] and [9]
propose a formulation of the energy management problem
in which the execution of the services are assumed to be
synchronized to the time period.

A. Permanent services

The permanent services depict services that are continu-
ously delivered and controlled all over the planning horizon.
Typically the room heating and refrigerating services are per-
manent services. Let us assume SRV (i) such a permanent
service characterized by the following data :

e P(i) the required power in execution

o Topi(i,t), Tinin (3, t) and Tax (7, t) respectively the op-
timal, the minimum and maximum satisfying controlled
parameters at time ¢

For example the inhabitant requires a temperature in his
room in the satisfying interval [18°C, 20°C]. The opti-
mization problem aims at setting the best temperature at
each time to minimize the energy cost and maximize the
inhabitant’s satisfaction. The thermal ability storage of the

building is then used to reach this optimum. In HESP only
one type of permanent service is addressed. A permanent
service is assumed to control a physical variable such as
temperature. The temperature set point T;,, (4, k) is the deci-
sion variable associated to the permanent service ¢. The set
point modulation corresponds to a variable amount of energy
E(i, k) allocated to the permanent service. T3, (2, k), E(i, k)
are the decision variables of this optimization problem.

The permanent services that are modeled by a first order
dynamic are addressed in HESP. The discrete time model of
a room heating service SRV (i) is as follows:

Tin(ik+1) = 70T (i, k) + (1 — €70 )Ty (i, k)

FG()(1 — 7)) E(i, k)

YN

+G, (1) (1 — e @) ps (i, k)

(D
Tmzn(lz k) S Tzn(l7 k) S Tma:v(za k) (2)

with the following data parameters:
o T}y, Ty the indoor and outdoor temperatures
« ¢, the equivalent electric power generated by the solar
radiation
e (G,G4 the gains of the first order dynamic from the
heating power and the solar radiance respectively
o 7 the constant time of the first order dynamic
According to the typical models for the thermal comfort
proposed in [10], the dissatisfaction index for the permanent
service SRV (i) at each time period k of a given type of
thermal space is computed as follows :

if Tm(l, k’) S Topt(iv k)
it Ty (i, k) > Topt(is k)

3)
The global dissatisfaction D(7) associated to SRV (i) can
then be defined as follows:

Topf, (l7k) —Tmin (lvk)
Tmax (i,k) = Topt (4,k)

D(i,k) =

T-1
D(i) =Y D(i,k) 4)
k=0

B. Timed services

A timed service depicts an activity that is required at
some time and which execution has a given duration lower
than the planning horizon. The timed services are associated
with appliances which number of settings is not too large,
typically few times per day. The set of timed services is a
set of tasks to be scheduled with time windows constraints
(ready times and due dates) and resource sharing constraints.
Preemption is not available. Typically cooking a meat with
an oven, washing dishes are examples of timed services.
A timed service SRV (i) is characterized by the following
input data:

 P(i) the required power in execution

o fopt(?), fmin(?) and fiax (i) the requested, earliest and

latest allowed ending times respectively



e d(7) the execution time

Timed services such as washing are expected by the
inhabitant to be finished at a given preferred time denoted
fopt (7). The earliest and latest requested ending times are
given by the inhabitant for the programmable services or
predicted from the user’s behavior for the not programmable
services. The ending time f(i) is the decision variable
associated to a timed service.

The service quality achievement depends on the amount
of time it is shifted from this preferred value. Then the
following dissatisfaction index D(i) can be computed for
a timed service.

D) — fopt (i . ; )
D(i) = { m b L@
7 Fam L S(0) < fopi(d)
C. Unsupervised service

All energy consuming activities in housing cannot be
taken into account as services to be scheduled. Lighting is
one of the best examples of unsupervised service. Indeed put
the light on is totally dependent on the inhabitant’s presence
in a room, a parameter that is neither controllable nor pre-
dictable at the planning level. Then all activities that cannot
be controlled and/or individually predicted have no interest
to be planned to optimality. Those activities are merged
together into one unsupervised service. The unsupervised
service is defined by the energy P, (k) consumed at period
k given as a data for the optimization problem. No decision
variable is associated to the unsupervised activities in the
scheduling problem.

D. Power supply

Let us denote SRV (i) a power supply activity. The
power supply is the cumulative resource and represents the
available power P(i, k) over the planning horizon and the
associated cost C(i, k) at every time period for a given
production mean. In the problem HESP, the available power
can be consumed by the services or not. Then a power supply
service SRV (i) is associated to the following constraint:

E(i,k) < P(i,k)A Vke{0,..,T -1} (6)

where E(i, k) the provided energy during the time window
JkA, (k + 1)A]. This constraint aims at translating the
available power into a maximal amount of energy per time
period.

E. Energy balance

A constraint modeling the production/consumption bal-
ance has to be added. This constraint can be written as
follows:

> E(j,k)=Y_ E(i,k)+P.(k)A Vke{0,...,T—1}

J€Ls i€Tc
7

where Zs and Z. are respectively the set of indexes of the
power supply services and the consumer services.

E. Objective function

Depending on the inhabitants’ requests, a compromise
between the cost and the comfort has to be exhibited. This
is generally the case when the energy cost changes. The
highest cost corresponds to the peak consumption periods.
An aggregation approach has been implemented to exhibit
such a compromise. The corresponding objective function to
be minimized is depicted by equation (8):

o= ij C(j, k) E(j, k) + b > a(i)D(i)

JE€Ts k=0 ZZ'GIc a(i) i€Te
3

The parameters «(¢) depict the priorities between the con-
sumer services and the parameter § depicts the relative
importance given by the user to the energy cost and the
comfort.

The optimization problem is defined by equations (1) to
(8). The linearization of this formulation is not addressed in
this paper. It can be performed using integer variables. In
the following of the paper the linear equation (1) will be
used to illustrate the robust parametric optimization.

III. ROBUST ENERGY MANAGEMENT PROBLEM

In this section, parametric uncertainties are taken into
account in the optimization problem. The robust formulation
introduced by Bertsimas and Sim [7] is depicted and then
adapted to the home energy management problem. Uncertain
parameters in the permanent services are addressed with this
robust approach.

A. Uncertainties analysis in the home energy system

The home energy management problem has been modeled
with a lot of parameters that are uncertain data. This is
generally the case in modeling. This is particularly true in the
energy management problem because of the high sensitivity
of the decision (the energy allocation) to the data. Generally
speaking, every forecasted data involved into a model is not
exactly known.

Sources of uncertainties in the problem of energy man-
agement are very numerous. In this paper uncertainties
related to the uncertain character of data is only studied.
The uncertain weather forecast is a typical example of such
uncertainties. The weather forecast is responsible for two
main parameters that play a key role in the dynamic equation
of the permanent services (i.e. the outdoor temperature and
the solar radiation). These data define the required amount
of energy to be consumed to satisfy the requested indoor
temperature. In order to take into account such uncertainties
a parametric model is assumed and implemented into the
linear equations. This formulation can be used for every
uncertain parameter a;. In the assumed model of uncertainty
the parameter a; is associated with a random variable a;
that takes value according to a symmetric distribution in an
interval centered around the nominal or expected value. The



robust linear optimization will be depicted in this section to
face these uncertainties.

B. The robust formulation of Bertsimas and Sim

A linear formulation is proposed in [7] to face parametric
uncertainties under a convex model of data uncertainty. Let
us assume the ith constraint of the deterministic problem,
i.e. a;x < b;. The formulation of the robust optimization of
parametric uncertainties is firstly explained in the basic case
of independent parameters. It is then extended to the case
of correlated parameters.

1) Independent parameters: Let J; be the set of coef-
ficients a;;, j € J; that are subject to parameter uncer-
tainty. These parameters are assumed to be independently
uncertain. Then the parameter uncertainty is defined as a
random variable @;;, j € J; that takes value according to
a symmetric distribution with mean equal to the nominal
value a;; in the interval [a;; — dQ;j, a;; + @;;]. For each
constraint ¢ a parameter ['; is introduced. It takes values in
the interval [0, |J;|]. The parameter I'; allows adjusting the
robustness of the proposed method against the required level
of conservatism of the solution. The coefficients of the ¢th
constraint are allowed to change up to a;; and one coefficient
a;; changes up to (I'; — |I';|)a;. This robust formulation
can be written as follows:

maximize c¢x
Zj Q525 + ﬁi(X, ].—‘2) < bl Vi
—y; Sx;<y; Vj
y>0

subject to

®

with j3;(x,T;) the protection function of the ith constraint
that is written as follows:

max @iy

SiUt;|SiCJi|Si|=Ti],ti€J:\Ss {]gl i3Yi

(10)

This definition of the robust optimization can be derived
into a linear formulation as follows:

maximize ¢X

>0 ety + 2zl + 3,05 pig <bi Vi
zi +pij > aiy; Vi, j C J;

Y Sw; <y Vi

DijsYj> 2 =2 0 Vi, j C J;

subject to

11

Thanks to this formulation the probability that the ith

constraint is violated can be computed. Let us denote z an
optimal solution of the robust problem 11. Then it yields:

r <Z GijT; = bi)
J (12)
i, (ﬂJ) + l_é+1 (ﬁj) }

<m0

+ (i = [T ])@it, yt, }

with n = and p=v — |v].
From this principle for robust optimization one can extend
the formulation to take into account correlated parameters.
2) Correlated parameters: Let us now assume the cor-
related data a;;. The variations of all a;; are due to |K|
sources of data uncertainty. Then the following model is
assumed:

- 2

dij = a5 + Z ik Gk (13)
keK;
with 7j;, independent and symmetrically distributed random
variables in [-1, 1] and g;; the range of variation of the
parameter a;; related to the source of uncertainty k. From
this model of uncertainty a linear formulation of the robust
problem can be written as follow:

maximize cX

Zaijxj + 21 + Z Dik < b; Vi

J kCK;

Zi +pij 2y Vi, k C K,

—Yik < Y GrjT; <y Vi k C K
JCJ;

Dik,Yir = 0 Vi, k C K;

subject to

(14)

C. Robust optimization for parametric uncertainties

In this section robust optimization for parametric uncer-
tainties is illustrated. Every parameter that is involved in the
constraints of the HESP can be assumed as an uncertain
parameter. Weather forecast are taken as example because
they are the most illustrative and the most sensitive to energy
allocation. The outdoor temperature 7,,; and the solar
radiation ¢g are assumed to be known through expected
values (Tout, qﬁs) and precision levels such that Tout S

|:Tout Tout7 Tout + Tout and ¢S S |:¢S - ¢S7 (bS + ¢S’

One can introduce the protection function in equation (1)
using the formulation (11) applied to the right-hand-side
coefficients:

Tinliyk + 1) — €70 Ty (i, k) — G(i)(1 — €70 E(i, k)
—(1 —e?m) Out(z k)xl(@k)
—G(i)(1 - 6*“)) s(i,k)x

(15)

1) Independent parameters: Let us assume that the varia-

tions of 7T,,; and ¢g are independent. With the two assumed

uncertain parameters, the parameter I'(7, k) takes values in

the interval [0,2]. From the equation (10) the protection
function can be written as follow:

¢ If0<D(ik) <1
Blisk) = [L(i, k) — [I'(i, k)]]

mac { Toue (i, )y (. R); 64 (i Ry )}
(16)



e If1<D(ik)<2:

B(i, k) = max{ai,as},
a1 = Tour(i, k)y1 (i, k)
+HI (i, k) — [T, k) |16s (i, k)y2(i, k)
ay = [[(i,k) = [T(i, k) || Tout (i, k)un (i, k)

o5 (i, k)ya (i k)
(17)

The equivalent linear program using (14) is as follow:
Ty (i, + 1) — €70 Ty, (i, k)
—G(i)(1 — e7®)E(i, k)
—(1— ") m( k)w1(i, k) (18)
—Gs ()(1—6*“)) s (i, K)o (i, k)
+2(i, k)T (i, k) + p1(is k) + pa(i k) =
2(i, k) + puis k) = y1 (i, k) Toue (i, k) > 0 (19)
2(i, k) + p2(i k) — y2(i, k)ds (i, k) > 0 (20)
—y1(i, k) <z1(i, k) <y1(i, k) (21)
( )
) =

—ya(i, k) < xa(i, k) <yo(i, k) (22)
x1(i, k) = z2(i, k (23)
pl(ivk)7y1(i7k)7p2(lak)7y2(luk)7 (ka) - (24)

The violation probability can be calculated from equation
(12) with n = 2. T'(i, k) is the attribute that has to be chosen
to fix the required protection level.

Remark: The unsupervised consumed power P, (k) (7)
could also be assumed as uncertain data and then studied in
a robust formulation. However it is not realistic to assume
that the variations of P, (k) satisfy an uniform distribution
around a nominal value. A formulation derived from the
definition of the service rate is better adapted. This kind of
approach is not addressed in this paper.

2) Correlated parameters: Let us now assume the cor-
relation between T,,; and ¢g, that is the most realistic
assumption. In this case, the parameter I'(i, k) takes values
in the interval [0, 1]. From the formulation (14), the robust
formulation can be written as follow:

Tin(ik+1)  —e70 Ty (i, )
—G(i)(1 — 7)) E(i, k)
_(1_67’@)) Out( k) (i, k) (25)
—G ()1 — 7 )y (i, k) (i, k)
+2(i, k)L (i, k) + p(i, k) = 0
2(i, k) +p(i, k) —y(i, k

)>0 (26)

—y(i, k) < Toue (i, k)1 (i k) + ds (i, k)aa(is k) (27)
fout(irk)xl(ivk)+$S(iak)m2(l k) <wy(i,k) (28)
x1(i, k) = z2(i, k) =1 (29)

p(i k), y(i, k), 2(i,k) > 0 (30)

D. Application example

Let us consider a simple example of allocation plan
computation for a housing for the next 24 hours. A 10
period planning horizon is assumed and four services have
to be delivered: SRV (1) is a grid power supplier, SV R(2),
SV R(3) are respectively the room HVAC service of bed-
room and living room, and SV R(4) corresponds to a clothes
washer. The forecasted outdoor temperature of this thermal
zone as well as the forecasted solar radiation is given in the
figure 1. The actual values are random variables supposed
to be uniformly distributed around the forecasted value with
a precision 7,,; = 1°C for the temperature and ¢g = 30W
for the solar radiation. These two uncertain parameters 7,,,;
and ¢g are assumed as independent parameters.

T.[°c] 4. 7]

. — L
: -

time time
2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

Figure 1. Forecasted values of the uncertain parameters

The optimization results of the heating service of bed-
room and the clothes washer service are used to examine
the quality of the robust solution. The heating bedroom
SRV (2) consumes P(2) = 1000W in execution. The re-
quired minimum and maximum allowed temperatures equal
respectively 22°C, 19°C and 25°C. The clothes washer is
considered as a timed service SV R(4). It just can be shifted
providing that the following comfort constraints are satisfied:
fmin(4) = 8am, frax(4) = 9pm and f,p(4) = 5pm. This
service requires 1500W in execution.

The problem (18) is solved for various levels of I'(2, k).
Figure 2 illustrates the energy reservation for the heating
of bedroom at the 5th period E*(2,5) as a function of
the protection level I'(2,5). The required energy increases
from O to 113W with the increasing values of I'(2,5) to
maintain the best thermal satisfaction in the bedroom at this
period. The figure 3 shows the robust energy planning for the
heating of bedroom service and the clothes washing service.
As expected, more the protection level increases, more the
energy reservation for the thermal service increases, so more
the timed service is shifted from the requested time to satisfy
the constrains of power supplier.

The violation probability of the constraint associated to
the thermal model, from equation (12), is also given in the
figure 4 as a decreasing function of I'(2, k). This kind of
curve can be used to choose the value of I'(2,k) from a



given risk to be covered or in other words from a given
service rate. The so-called worst case is very easy to exhibit.
A decisional strategy has to be added to choose a solution by
capturing the best trade-off between risk and performance.

IV. CONCLUSION

Energy management in buildings is a very important
problem due to the great impact of buildings in the current
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Figure 2. Energy reservation for the heating of bedroom service at the
Sth period
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Figure 3. Robust energy planning for the heating of bedroom service and
the clothes washer
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Figure 4. Violation probability

energetic context. In this paper, an optimization point of
view for energy management in houses has been depicted.
The energy consumption in buildings is very dependent to
the value of the data of the optimization problem. The robust
optimization approach has been introduced to take into
account parametric uncertainties such as weather forecast.
Robust energy allocations have been demonstrated. Some
works have now to be developed to propose the way how to
choose the protection level of parametric uncertainties with
regards to the entire set of required services.
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