

ABSTRACT

Mobile computing research evolves constantly and quickly.

New mobile devices, technologies, methods, or applications are

introduced every day. One of the mobile applications, location-

based services (LBS), has attracted great attention recently.

This research proposes location-based research, which uses

location information to find route anomalies, a common problem

of daily life. For example, an alert should be generated when a

pupil does not follow his/her regular route to school. Different

kinds of route anomalies are discussed and various methods for

detecting the anomalies are proposed in this paper. The

proposed method based on a linear route representation finds the

matched routes from a set of stored routes as the current route is

entered location by location. An alert is generated when no

matched routes exist. Preliminary experimental results show the

proposed methods are effective and easy-to-use.

Keywords: Location-Based Services, Mobile Security, Linear

Route Representation, Linear Approximation, and

Smartphones.

1. INTRODUCTION

The number of smartphones shipped worldwide has passed the

number of PCs and servers shipped worldwide in 2011 and the

gap between them is expected to keep bigger. The emerging

smartphones have created many kinds of applications that are

not possible or inconvenient for PCs and servers, even

notebooks. One of the best-seller applications is location-based

services. This paper proposes location-based research, which

uses location information to find route anomalies. Different

kinds of route anomalies are discussed and various methods for

detecting the anomalies are proposed in this research. It is

divided into five steps: (i) route data collection, (ii) route data

preparation, (iii) route pattern discovery, (iv) route pattern

analysis and visualization, and (v) route anomaly detection. The

major methods use a technique of incremental location search

based on a linear route representation, which facilitates the route

storage and matching. It begins the searching as soon as the first

location of the search route is entered. Location-by-location,

one or more possible matches for the route are found and

immediately presented. An alert is generated when no matched

routes exist. Preliminary experiment results show the proposed

methods are effective and easy-to-use. The rest of this paper is

organized as follows. Section 2 gives the background

information of this research, which includes three themes (i)

location-based services, (ii) related location-based research, and

(iii) route representations and matching. The proposed system is

introduced in Section 3 and several simple methods of route

anomaly detection are explained too. Section 4 details the two

major methods using a linear route representation and

incremental location searching. Section 5 gives experimental

results and evaluations. The last section gives a summary of this

research.

2. BACKGROUND AND LITERATURE REVIEW

Traditionally, a travel route is stored as a series of locations

(latitude, longitude) and route matching uses simple

comparison. This research saves the routes as sequences of line

segments and the route matching becomes finding the distance

between the current location and line segments. Related

research can be found from the articles [3,5,8,9,10,11,12].

Route representations: Route representations in computer are

similar to image representations because each consists of a set

of locations/pixels on a two-dimensional plane. Therefore, the

representations of images can be applied to route

representations and matching. Chang, Jungert, & Tortora [2]

proposed a 2-D string representation. A matching query may

specify a 2-D string, transforming retrieval into a 2-D

subsequence matching. A 2D C-string for spatial knowledge

representation, which employs a cutting mechanism and a set of

spatial operators, was proposed by Lee & Hsu in 1990 [6].

A Linear Route Representation for Route Anomaly Discovery

Wen-Chen Hu and Liang Cheng

Department of Computer Science, University of North Dakota

Grand Forks, ND 58202-9015, USA

Naima Kaabouch

Department of Electrical Engineering, University of North Dakota

Grand Forks, ND 58202-7165, USA

and

Lei Chen

Department of Computer Science, Sam Houston State University

Huntsville, TX 77341, USA

Route matching: Incremental search is a progressive search,

which finds matched text as the search string is entered

character by character. Most incremental searches are based on

the research of Aho and Corasick [1], who develop an algorithm

to locate all occurrences of any of a finite number of keywords

in a string of text. The algorithm consists of constructing a

finite state pattern matching machine from the keywords and

then using the pattern matching machine to process the text

string in a single pass. The number of state transitions made by

the pattern matching machine in processing the text string is

independent of the number of keywords.

3. THE PROPOSED SYSTEM

The GPS (global positioning system) function of smartphones

provides location information of mobile users. Collections of

location information are able to depict the mobile users’ travel

routes such as walking routes between homes and schools or a

saleman’s delivery routes. This research uses the location

information to find any route anomalies, e.g., a pupil does not

take the daily route to school. The proposed system is

introduced in this section.

The Proposed Steps

This research is to find route anomalies. It is divided into five

steps as shown in Figure 1:

i. Route data collection: This step collects route data

before the application is used,

ii. Route data preparation: Raw GPS data is usually not

reliable and consistent and includes many noises. It has

to be prepared before used.

iii. Route pattern discovery: Not all routes are valid, e.g., a

very short route is usually not useful. This step puts

valid routes into a database and removes invalid routes,

iv. Route pattern analysis and visualization: It analyzes

the routes and allows users to view the routes on maps,

and

v. Route anomaly detection: This step is used to find any

route anomalies, the theme of this research.

Figure 1. The five steps used by the proposed system

(a) (b) (c)

Figure 2. (a) The application icon “Route Checking” on a

device, (b) the entry page of the application, and (c) the page of

route data collection

Figure 2.a shows the application icon, Route Checking, on an

Android device. After clicking the icon, it displays the entry

interface of this system as in Figure 7.b, which includes three

radio buttons:

 Collect route data, which redirects to the interface in

Figure 2.c for route data collection after this button is

submitted. This function can be activated anytime, but

most likely it is activated at the beginning of using this

application.

 Check routes, which redirects to the interface in Figure

6.b for route checking after this button is submitted.

 Show stored routes, which is used to display the

information of the stored routes as shown in Table II,

which includes the number and start and end times and

locations of each route. The latitude and longitude of a

location are represented by r and θ of the polar coordinate

system. Routes can be added to the system from time to

time and users are able to delete undesirable. Table 1

shows the basic information about routes. Details of each

route are stored elsewhere.

Table 1. Basic route information including route

numbers, and start and end times and locations

Route

Start End

Time
r

(meter)
θ Time

r

(meter)
θ

1
05/26/2010,

18:23:42
8326 236.20°

05/26/2010,

18:45:23
9397 236.22°

2
05/27/2010,

09:31:58
8594 235.34°

0527/2010,

09:50:41
8526 235.33°

… … … … … … …

n
05/31/2010,

13:13:37
8038 236.86°

05/31/2010,

14:20:37
8976 236.90°

System Implementation

The collected route data is usually raw because GPS data is

usually not reliable and consistent and contains many noises

[4]. The data needs to be processed before being used

effectively. The methods of data preparation include filtering,

recovery, restoration, and trajectory. The system then checks

the prepared route data and removes invalid routes. This

research uses location information to detect route anomalies.

Many methods can be used to find route anomalies. Four kinds

of detection are introduced next:

 Time check: For example, the Route #1 takes about 23

minutes. If a trip follows the route and takes far more

than 23 minutes, then an alert may be generated. Also,

the start and end times can be used in this check. For

example, the schools start at 8:30am. If the student has

not arrived at school by 8:30am, then an alert may be

generated.

 Border check: For example, the delivery routes are within

a community. If a route reaches out of the community,

then an alert may be generated. An easy way to find the

border is to box the routes such as the one shown in

Figure 3.

Figure 3. An example of boxing a route

 Start and destination check: If the traveler does not start

from any beginning locations of routes or does not reach

any destination by a specific time, it may deserve an alert.

 Route check: The above methods are simple, but lack

accuracy. This method checks the routes with higher

accuracy and uses more complicated algorithms, which

will be detailed in the next section.

4. ROUTE CHECKING USING A LINEAR ROUTE

REPRESENTATION

Route checking is more complicated. This section discusses the

methods used to find route anomalies. Traditional routes are

represented by series of locations, which are complex and

difficult to use. An algorithm is developed to straighten the

routes so the routes can be stored as a set of line segments and

route matching becomes a simple task of checking the distance

between the current location and line segments. The proposed

route checking can be divided into two cases, ordered and

unordered routes. There is no alert generated if the traveler

does not start at the beginning location or stop at the end of a

route since the start and destination check can be easily used to

check this condition.

Linear Approximating a Human Travel Route

The proposed linear approximation algorithm converts a human

travel route into line segments. The approximation captures the

essence of a route in the fewest possible line segments. A

polygonal approximation, based on an error function, is applied

to this method [7]. Before applying this algorithm, however,

the route has to be smoothed to unit thickness so that branch

routes may be located. Let e be the maximum allowable error.

For a given location A, through which an approximation line

must pass, one can define two points B and C at a distance e

from A. The algorithm searches for the longest segment where

the curve is contained between two parallel tangents starting B

and C:

// Linear Approximating a Human Travel Route

LINEAR_APPROX(ROUTE, pi, pj, e)

 // ROUTE: a route in a series of locations (latitude, longitude)

 // pi: the initial location of the route

 // pj: the neighbor of pi on the route

 // e: the maximum allowable error

1. b ← pi + e
2. c ← pi ‒ e
3. IS_FIRST ← TRUE
4. while NUMBER_8_NEIGHBOR(pi) ≠ 0
5. while NUMBER_8_NEIGHBOR(pi) > 1
6. pj ← BEST_PATH(ROUTE, pi, e)
7. LINEAR_APPROX(ROUTE, pi, pj, e)
8. print pi

9. ROUTE[pi] ← CLEAR

10. Lb ← bpj

11. Lc ← cpj

12. if IS_FIRST

13. Labove ← Lb

14. Lbelow ← Lc

15. IS_FIRST ← FALSE
16. else

17. if Lb is above Labove

18. Labove ← Lb

19. if Lc is below Lbelow

20. Lbelow ← Lc

21. if (Labove , Lbelow) > 0

22. print pi

23. b ← pi + e
24. c ← pi ‒ e
25. IS_FIRST ← TRUE
26. pi ← pj
27. pj ← 8_NEIGHBOR(pi)
28. ROUTE[pi] ← CLEAR
29. print pi

The function BEST_PATH finds the route of the longest line

segment when the location pi has more than one 8-neighbor.

This is why the route needs smoothing before applying the

algorithm. A non-unit thickness route may mislead the

algorithm into calling the BEST_PATH function. This

algorithm requires quadratic time because the BEST_PATH

function needs to check as many paths as possible and any

location on the route may invoke it. Figure 4 shows an example

of order routes and Figure 5 shows the corresponding linear

route after applying the algorithm LINEAR_APPROX to the

route in Figure 4.

Figure 4. An example of order routes

n: Travel order

1 2

3

4

5
●

●
●

●

Start

End

Figure 5. The corresponding linear route after applying the

algorithm LINEAR_APPROX to the route in Figure 4

Ordered Routes

For this kind of routes, the order of the locations is

relevant, e.g., bus routes. An example of ordered routes

is given in Figure 4, where the directional sub-routes are

the numbers, 1, 2, 3, 4, and 5. The numbers also imply

the travel order, e.g., the traveler takes the route:

start→1→2→3→4→5→end. Assume the traveler must

travel along the stored routes. A simple algorithm using

incremental location searching for finding route

anomalies in ordered routes is given below. It checks the

traveler’s locations one by one. If the distance between

the current location and the current line segments is

greater than a threshold value, then it reports an anomaly.

The traveler’s beginning location can start anywhere in a

route and the traveler can end the checking anywhere and

anytime.

Route Checking for Ordered Routes

1. Every stored route is an available route.
2. Find the start location of the traveler in an available

route i and set the current line segment ic to the first
matched segment.

3. d0 = the distance between the current location and the
current line segment ic .
d1 = the distance between the current location and the
next line segment ic+1 .
if [d0 ≤ e (the allowable error)], then do nothing,
else if [(d0 > e) and (d1 ≤ e)], then ic = ic+1 and ic+1 =
ic+2 (the next segment after ic+1),
else remove the route from the available routes.
If the available routes are empty, report an anomaly
and stop.

4. Repeat the above step for the next location of the
traveler until the traveler ends the route checking.

Unordered Routes

For unordered routes, the order of the locations, maybe

except the start and end locations, is irrelevant, e.g.,

newspaper delivery. Figure 4 shows an example of

unordered routes if the numbers are ignored. In order to

find anomalies in unordered routes, the route data

collection needs to find and save all line segments

connected to intersections, such as the {3, 4, 8, 9} and {5,

6, 11, 12} in Figure 5, and bidirectional sub-routes among

the start and end segments of each route. An intersection

is a road junction where two or more roads either meet or

cross at grade. For example, the route in Figure 4

includes the following items:

 Start segment: Segment 1,

 End segment: Segment 12,

 Line groups: {3, 4, 8, 9} and {5, 6, 11, 12}, and

 Bidirectional sub-routes: 1↔2↔3, 4↔5, 6↔7↔8,

9↔10↔11, and 12.

The algorithm of finding route anomalies in unordered

routes is given below. It is more complicated compared

to the one for ordered routes because the traveler’s next

location could be in several possible sub-routes. When an

intersection is reached, the algorithm checks all available

sub-routes from the intersection.

Route Checking for Unordered Routes

1. Every stored route is an available route and every sub-

route of an available route is an available sub-route.
2. Find the start location of the traveler in an available

sub-routes of an available route i and set the current
line segment ic to the first matched segment.

3. d0 = the distance between the current location and the
current line segment ic .
d1 = the shortest distance between the current
location and the line segment ic+1 among the ones
connected to ic.
if [d0 ≤ e (the allowable error)], then do nothing,
else if [(d0 > e) and (d1 ≤ e)], then mark the ic
unavailable and ic = ic+1 ,
else remove the route from the available routes. If the
available routes are empty, report an anomaly and
stop.

4. Repeat the above step for the next location of the
traveler until the traveler ends the route checking.

The above algorithm does not check whether all sub-

routes are visited. It could be easily remedied by adding

a checker on each sub-route. Also, the algorithm

generates an alert if a sub-route is visited twice because it

is unusual to travel a sub-route twice in most cases. It

could be easily modified if users do not want it to

generate an alert for this condition.

5. EXPERIMENTAL RESULTS

This section gives the experimental results.

Route Data Collection

The first step of this research is to collect route information.

The collection could be activated anytime and anywhere.

Figure 2.b shows the entry page of the application. After a user

picks the button “Collect route data,” the system displays the

interface in Figure 6.a including three radio buttons:

 Start collecting route data, which starts collecting route

data. Typical location information provided by a

smartphone includes times, the latitude and longitude of a

n: Travel order

●
●

●
● Start

End

1
2

3
4

5
6

7
8

9
10

11

12

location. The location information is collected as

frequently as possible and the collection frequencies

depend on the travelling methods. For example, the

frequencies for walking, biking, and driving are different.

This process runs in background by using multi-

threading, so the smartphone can still function as usual.

 End collection, which ends the current route data

collection.

 Check the current route, which is used to check the status

of the current data collection including the map as in

Figure 6.c and data as in Table 2.

 (a) (b) (c)

Figure 6. (a) The page of route data collection, (b) the page of

checking the current route, and (c) the current route map

Table 1 shows the basic information about routes. Details of

each route are stored elsewhere. An example of the Route #1

details is given in Table 2, where the locations and times are

collected periodically, e.g., every minute for walking and every

10 seconds for driving.

Table 2. An example of detail information of a route

(minute)
Time r (meter) θ

0 05/26/2010, 18:23:42 8326 236.20°

1 05/26/2010, 18:24:42 8394 236.20°

… … … …

22 05/26/2010, 18:45:23 9397 236.22°

Route Data Preparation and Route Pattern Discovery,

Analysis, and Visualization

The collected route data is usually raw because GPS data is

usually not reliable and consistent and contains many noises

[4]. The system also allows users to check the stored routes as

in Figure 7.b. Other than showing them the route information

as in Tables II and II, users will also like to view the stored

routes. One of the routes is shown in the Figure 7.c.

(a) (b) (c)

Figure 7. (a) The system entry page, (b) the page of showing

stored routes, and (c) an example of a stored route

Route Anomaly Detection

This research uses location information to detect route

anomalies. An alert as in Figure 8.c is generated when an

anomaly is found. Otherwise, the smartphone just functions as

usual. The alert can be sent via an email or a phone call. The

interface in Figure 8.b is for checking routes including three

radio buttons:

(a) (b) (c)

Figure 8. (a) The entry page of the application, (b) the page of

route checking, and (c) an acknowledgment message after

detecting a route anomaly

 Start checking the route, which runs in background by

using multi-threaded programming, so the smartphone

can still function as usual.

 End checking, which stops the current route checking.

 Show the current checking, which is used to check the

status of the current route checking. For example, how

closely will the current route trigger an alert or how many

routes are matched so far? Other than showing the data of

the current route as in Table 2 by using the bottom button

in Figure 9.b, the system also shows the current position

in a possible route as in Figure 9.c by using the top button

in Figure 9.b.

(a) (b) (c)

Figure 9. (a) The page of route checking, (b) the page of

showing current checking, and (c) the current position in a

stored route

The proposed methods are convenient and effective. The

execution is also efficient. The times used for the time check

and start & destination check are constant. The times for the

border check and route checks are O(n), where n is the number

of user locations, because the checks are performed location by

location and each location requires a constant time to do the

matching. The time for the procedure Linear_Approx is also

O(n), where n is the number of locations in a route, because the

algorithm straightens the route location by location. Also, the

procedure is only used during route collections, but not route

checking, which happens more often.

6. CONCLUSION

This research proposes location-based research, which uses

location information to find route anomalies, a common

problem of daily life. For example, an alert should be generated

when a school bus misses part of a route. Different kinds of

route anomalies are discussed and various methods for detecting

the anomalies are proposed in this paper. It is divided into five

steps: (i) route data collection, (ii) route data preparation, (iii)

route pattern discovery, (iv) route pattern analysis and

visualization, and (v) route anomaly detection. The major

methods use a linear route representation and incrementally

search locations, which finds matched routes as the search route

is entered location by location. It begins the searching as soon

as the first location of the search route is entered. Location-by-

location, one or more possible matches for the route are found

and immediately presented. An alert is generated when no

matched routes exist. Experimental results show the proposed

methods are effective and easy-to-use. Other than the linear

route representation, the proposed incremental location search

is based on string matching, which is simple but effective. A

search based on the following methods is worth consideration:

 Finite automata: The collected routes are used to build a

finite automaton, which is then used to check any route

anomalies.

 Matrix multiplication: Similar routes are found by matrix

multiplications between the current route and the stored

routes.

 Neural networks: A route is a sequence of locations.

Route matching is used to find any route anomalies and a

modified Hopfield neural network can be designed to

solve this problem.

 Approximate string matching: Routes are stored as strings

or sequences of locations. Approximate string matching

is then used to find any route anomalies.

7. REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching:

An aid to bibliographic search,” Communications of the

ACM, 18(6): 333-340, 1975.

[2] C. C. Chang, E. Jungert, and G. Tortora, Intelligent

Image Database System, World Scientific, Signapore,

1996.

[3] Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu,

“Trajectory simplification method for location-based

social networking services,” Proceedings of the 2009

International Workshop on Location Based Social

Networks, pages 33-40, 2009.

[4] Y. Iijima and Y. Ishikawa, “Finding probabilistic nearest

neighbors for query objects with imprecise locations,”

Proceedings of the 10th International Conference on

Mobile Data Management: Systems, Services and

Middleware, Taipei, Taiwan, pages 52-61, May 18-20,

2009.

[5] K. Kolodziej and J. Hjelm, Local Positioning Systems:

LBS Applications and Services, CRC Taylor & Francis,

2006.

[6] S. Y. Lee and F. J. Hsu, “2D C-string: A new spatial

knowledge representation for image database systems,”

Pattern Recognition, 23(10):1077-1087, 1990.

[7] T. Pavlidis, Structural pattern recognition, Spring-

Verlag, New York, 1977.

[8] S. Steiniger, M. Neun, and A. Edwardes, Foundations of

Location-Based Services, 2006. [Online]. Available:

http://www.geo.unizh.ch/

publications/cartouche/lbs_lecturenotes_steinigeretal2006

.pdf [Accessed: December 12, 2011].

[9] S. Wang, J. Min, and B. K. Yi, “Location based services

for mobiles: technologies and standards,” Proceedings of

the IEEE International Conference on Communication,

Beijing, China, May 19-23, 2008.

[10] H. Yoon, Y. Zheng, X. Xie, and W. Woo, “Smart

itinerary recommendation based on user-generated GPS

trajectories,” Lecture Notes in Computer Science,

6406:19-34, 2010.

[11] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning

transportation mode from raw GPS data for

geographic applications on the Web,” Proceedings

of the 17th International World Wide Web

Conference (WWW 2008), pages 247-254, Beijing,

China, April 21-25, 2008.

[12] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining

correlation between locations using human location

history,” Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, pages 472-475, Seattle,

Washington, November 4-6, 2009.

