
Enhancement of an Undergraduate Software Engineering Course by Infusing
Security Lecture Modules

Hyunju KIM, Natarajan MEGHANATHAN, and *Loretta A. MOORE

Department of Computer Science, *Division of Research and Federal Relations
Jackson State University
Jackson, MS 39217, USA

ABSTRACT

As software is used everywhere in our daily lives, the
importance of developing secure software becomes more
apparent. Software security is increasingly considered a
software engineering problem, thus traditional software
engineering curricula need to be enriched with security
components. This paper reports an effort to incorporate
security topics in a senior-level undergraduate software
engineering course. The course was modified with
respect to topics covered, course objectives, and course
requirements. This paper also details specific security
topics introduced into the course and their associations
with traditional software engineering topics. Course
assessment data and student feedback show that our
enhancements have been efficient in infusing the security
considerations required for secure software development.

Keywords: Software Engineering Education, Secure
Software Engineering, Security Lecture Modules, Course
Enhancement, Software Security Attacks

1. INTRODUCTION

As software is used everywhere in our daily lives, the
importance of developing secure software becomes more
apparent. The challenge is to enrich the traditional
software engineering approach with security aspects,
taking into account limited time and resources. Most
successful attacks result from targeting and exploiting
known, non-patched software vulnerabilities and
insecure software configurations, many of which are
introduced during design and coding [2]. Thus it is
imperative that secure design and coding principles are
embedded throughout the whole software development
lifecycle.

This paper reports an effort to incorporate security
lecture modules in a traditional undergraduate software
engineering course. This effort forms part of the NSF
(National Science Foundation)-funded TUES
(Transforming Undergraduate Education in STEM)
program on incorporating security aspects in the
undergraduate Computer Science curriculum at Jackson
State University.

2. BACKGROUND AND RELATED WORK

The Department of Homeland Security has established
the Build Security In (BSI) project and provided useful
resources through a website (https://buildsecurityin.us-
cert.gov/) for incorporating security into every phase of
software development. These resources have been
developed according to the principle that software
security is a software engineering problem and must be
addressed in a systematic way throughout the software
development life cycle [6]. In response to this principle,
there have been several efforts to develop new software
engineering modules and courses to educate computer
science majors in secure software development.

A study reported in [13] developed a course module for
writing secure code. The module consisted of security
and insecure code concepts, safe programming practices,
and simple lab exercises. It was taught in an introductory
Java programming class and a programming design class
for freshman and sophomore, respectively. This study
showed that a course module-based approach is an
effective method of educating the students about the
impacts of insecure code and safe programming practices.
Alternatively, the authors of [3] developed a software
security learning process that used outcomes of a
traditional software engineering course and developed
secure software. It was an effort to develop a teaching
process for secure software rather than to develop
teaching materials.

Efforts reported in [4, 5, 8, 9, 11, 12] developed
undergraduate or graduate software engineering courses
and/or teaching materials to incorporate security topics
and issues into a traditional software engineering
education. The studies in [8, 11, 12] involved the
development of teaching modules covering major
security topics for a graduate secure software
engineering course. Although the course developed in [9]
was undergraduate-level, it was designed to replace the
traditional software engineering course within an
undergraduate computer science curriculum.

On the other hand, an effort reported in [4, 5]
incorporated security studies into an existing
undergraduate software engineering course. This
traditional undergraduate software engineering course

was modified in three areas: instructions; lecture
materials and exercises; and the semester-long project.
The course adopted a combination of both facilitator and
formal authority-based teaching. Along with the
traditional software engineering topics, security-related
topics such as the security development lifecycle model,
security risk, and secure design were introduced to the
course. A single, semester-long project was executed as
well. The challenges identified from this effort were a
lack of security teaching materials for undergraduate
students and a lack of time for completing the
development project within a single semester. Besides
developing or enhancing software engineering courses, a
study in [10] proposed security topics for secure software
engineering according to the Software Engineering Body
of Knowledge (SWEBOK) Guide.

These efforts demonstrate an awareness that traditional
software engineering education needs to be enhanced
with security components. The new Computer Science
Curricula 2013 [1] reflects this particular need by
introducing the new knowledge area of Information
Assurance and Security (IAS). IAS covers Security
Concepts, Secure Design, Defensive Programming,
Threats and Attacks, Network Security, and
Cryptography as its Core-Tier topics.

The traditional knowledge area of Software Engineering
(SE) has been also changed: Security Risk has been
added to Software Project Management, and Software
Construction (secure coding practices, security enhanced
programming, security problems in programming, and
security considerations) has been added as two hours of
Core-Tier2. In addition, the elective topic of Software
Reliability from the 2001 computing curricula is now a
one hour Core-Tier2 topic.

Addressing the need for secure software engineering, this
paper presents security component enhancements made
to a traditional undergraduate software engineering
course. As part of our TUES project, the team developed
two new elective senior-level undergraduate security
courses: Systems and Software Security, and Advanced
Information Security [7]. Besides these elective courses,
we adopted security lecture modules used in these
courses into our undergraduate software engineering
course required by the Computer Science BS program.
Consequently, all computer science majors have been
educated in the essentials of secure software engineering
for the past three academic years. Section 3 of this paper
introduces this enhanced software engineering course.
Section 4 discusses findings from our experiences,
followed by a conclusion in Section 5.

3. THE UNDERGRADUATE
SOFTWARE ENGINEERING COURSE

The BS program in Computer Science at Jackson State
University requires students to take CSC 475 Software
Engineering followed by a senior capstone project course

before their graduation. While students are taking the
software engineering course, they form a team of three to
four members for their senior project. Each team selects
a capstone project, and students are asked to complete
requirements engineering and system analysis while in
CSC 475. During their capstone project course, they
focus more on system design, implementation, and
testing.

The CSC 475 Software Engineering course has the
course description: "Introduction to software engineering,
software design, APIs, software tools and environments,
software development processes, software requirements
and specifications, software verification and validation,
software implementation, software evolution, and
software project management". As this description
indicates, the course covers the fundamentals of software
engineering for senior-level computer science majors.
Prior to Fall 2010 semester, however, it did not have
appreciable coverage of security-related issues.

As part of our TUES project, since Fall 2010 semester,
we have (1) identified security-related issues and topics
in developing software; (2) developed security lecture
modules; (3) mapped security topics to relevant software
engineering topics; and (4) incorporated the security
lecture modules into the software engineering teaching
materials. In this particular effort, our team did not
intend to develop a new software engineering course.
Instead, we aimed to efficiently incorporate security
components in the traditional software engineering
course.

3.1 Course Modification
As security topics were introduced, the course has been
modified with respect to topics covered, course
objectives, and course requirements. A set of security
topics that are closely related to software development
was identified as follows:

• Secure Software Development Lifecycle
• Principles and Models for Software Security

o System dependability: security
fundamentals

o The 10 principles of software security
o Bell-LaPadula confidentiality model
o Biba integrity model

• Security Requirements
o Functional and nonfunctional security

requirements
o Misuse cases and mitigation plans

• Security Risk Analysis
o Risk assessment process
o STRIDE threat model
o Attack trees

• Software Security Attacks
o Attack patterns
o Dependency attacks
o User interface attacks
o Design attacks
o Implementation attacks

• Testing for Software Security

o Security functional testing: a fault
model

o Fuzz testing
o Mutation testing
o Run-time fault injection

These topics range from the concepts of software
security to security testing methods so that students can
learn security considerations and guidelines in every
phase of software development. Thus, the course teaches
the importance of secure software development lifecycle
as a semester progresses. Our approach to infuse these
security topics to the existing software engineering
topics is presented in Section 3.2. The course objectives
were also updated accordingly as follows:

Each student who successfully completes this course
should be able to:

• CO1: Explain software process models and their
characteristics and principles and models for
software security.

• CO2: Understand issues in project management,
including planning for software development
and specify software evolution processes and
issues in software maintenance.

• CO3: Apply key elements and common
methods for elicitation and analysis to produce
a set of software requirements, including the
appropriate security-related aspects, for the
chosen Senior Project.

• CO4: Select and apply appropriate design tools
and guidelines in developing software.

• CO5: Specify issues in risk assessment for
secure software design and explore different
software security attacks with respect to
dependency, user interface, design, and
implementation.

• CO6: Test software, including the security
aspects using software verification and
validation methods.

The course objective of CO5 was newly added, and the
course objectives of CO1, CO3, and CO6 were updated
in order to incorporate the security components. Each
student was evaluated with respect to the objectives
through exams, quizzes, and project assignments. In
addition, the following in-class or lab exercises were
designed and used to provide students hand-on
experiences and/or real-life attack examples:

• TOCTTOU (Time-of-Control-to-Time-of-Use)
attack: this exercise asks students to simulate
the TOCTTOU vulnerability by granting and
revoking the permissions to access a text file in
an Ubuntu virtual machine.

• Code injection attack: this exercise shows how
code injection attacks such as SQL injection
attack and Cross-Site Scripting (XSS) attacks

are launched. An online auction site was setup
using PHP and XAMPP. Students are asked to
develop client-side input validation controls and
server-side controls to prevent such injection
attacks.

• Cross-Site Request Forgery (XSRF) attack: this
exercise shows how the attack exploits a web
site's trust in the user.

• Email tracker: this exercise shows a web bug
and how it works.

Not all these exercises were required by the course in
every semester: they were selectively provided to the
class depending on student's background and learning
pace. However, all the exercises were usually covered in
the two consecutive courses of Software Engineering and
Senior Project.

The course requires each student to be in a team for a
capstone project. The project teams are directed to
identify a project topic that has security components, for
instance authentication, authorization, encryption, etc.
During the requirements engineering and system analysis,
each team is asked to identify and document security
requirements, misuse cases, and mitigation plans for
their project. The knowledge and tools taught by this
course are heavily used in implementing and testing the
project during the capstone project course.

3.2 A Mapping of Security Topics in Software
Engineering
As mentioned earlier, our TUES project developed two,
new security courses (CSC 438 Systems and Software
Security and CSC 439 Advanced Information Security)
as senior-level electives. During the first year of the
course modification, the software engineering course
invited the instructor who developed the new security
courses. The invited instructor taught the security lecture
modules of the topics listed in Section 3.1. However,
based on student feedback, the team decided to infuse
these security topics to the existing software engineering
teaching materials, and a single instructor began to teach
all the course topics. This made the class flow more
seamless, and a consolidated set of teaching materials
became available to students.

In order to infuse the security topics to the teaching
materials, we identified software engineering topics that
are related to these security topics. We developed a
mapping of security topics in software engineering,
which also includes the associations with the course
objectives. Table 1 summarizes the mapping that has
been implemented as teaching materials in the forms of
lecture notes, project assignments, and/or lab exercises.
All the security modules and teaching materials are
available through our project website
(http://www.jsums.edu/cms/tues) for the public and
possible adoption at other institutions.

Table 1. A mapping of security topics in software engineering

 Software Engineering Topics Security Topics Course Objectives
Software Process Models Secure Software Development Lifecycle CO1
Software Quality Management: System
Dependability

Principles and Models for Software
Security

CO2, CO5

Project Risk Management Security Risk Analysis CO2, CO5
Requirement Engineering: Functional,
Nonfunctional, User, System, and Domain
Requirements;
Object-oriented Analysis: UML Diagrams

Security Functional and Nonfunctional
Requirements;

Misuse cases and mitigation plans

CO3

Object-oriented Design: Providing Access
Control

Authentication and Authorization;
Software Security Attacks

CO4

Software Verification and Validation Testing for Software Security CO6

Adding the security topics to the course required the
course topics and their depth to be adjusted. The
incorporation of security topics limited the coverage of
certain elective or advanced software engineering topics
in the course. Project discussions during lecture were
also limited in order to allocate sufficient time for the
security coverage.

4. FINDINGS AND STUDENT ASSESSMENT

As reported in the previous studies [4, 5, 8], challenges
commonly faced in efforts to incorporate security into
the teaching of software engineering, especially at
undergraduate level, include a lack of teaching materials
and a lack of time for students to complete development
projects. Our approach to these problems was to develop
portable security lecture modules in one or more security
courses and infuse them to the existing teaching
materials in the software engineering course/s. This also
made it possible to easily adjust levels of coverage and
depth of the course depending on the student's
background and learning pace.

In relation to the implementation of security features,
capstone projects have been used. Because the projects
span two consecutive courses, students are able to spend
more time working on security aspects and risk analysis
in developing system requirements. On the other hand,
the course demands that students select projects with
security features, which puts a limit on available project
topics. It has been challenging to identify student
projects that are both reasonable and diverse.

The incorporation of security topics into the course has
primarily been evaluated through faculty course
assessment and self-assessment feedback surveys from
students. The data and feedback indicate that students
have gained knowledge on the security topics as intended.
On a scale of 1-4 (1 being Poor and 4 being Excellent),
students from Fall 2010 through Spring 2012 semesters
evaluated their ability to incorporate security-related
aspects in software development before taking the

software engineering course to be 1.3 on average. After
taking the course, they evaluated their ability to be 2.7 on
average, which indicates that the course has contributed
to their security education.

Students were also able to design and implement security
modules in their senior projects. Table 2 summarizes
security features that were commonly incorporated into
capstone projects since the course was modified.

Unlike the most of the previous studies described in
Section 2, our goal in this effort was not to develop a
new secure software engineering course, but to enhance
the existing software engineering course with security
components. Independent guest lectures on security
topics were not appreciated by students because the
lectures were considered an extra burden. Therefore,
there was a need to seamlessly integrate the teaching of
security and the teaching of software engineering. Our
approach of developing subject mapping and infusing
security topics according to mapping in software
engineering has been observed to be sufficient to satisfy
this need.

5. CONCLUSION

We developed a mapping of security topics in software
engineering and infused the security lecture modules to
the undergraduate software engineering teaching
materials according to the mapping. This approach
required modification of the course topics, course
objectives, and course requirements. Our approach has
been observed to be efficient in delivering a desirable
amount of security coverage according to student
background and learning pace. Thus, it can be utilized as
a method to introduce security components to
undergraduate software engineering, with no curriculum-
level changes.

In order to evaluate our activities, we collected course
assessment data through faculty course assessment and
feedback surveys from students. The data has shown that

the students' knowledge of software security and its
related issues increased after taking the enhanced
software engineering course, and they were able to
effectively incorporate security modules in their capstone
projects.

Table 2. Security features commonly incorporated in
 capstone projects

Injection attack
prevention
module

User input fields are protected
from injection attacks with a
white-list sanitization approach.

Authentication
module

 Security questions are asked for
registration and used when the
user tries to reset the password
after failing to provide the correct
one in a certain number of tries.

Encryption
module

Confidential data such as user IDs
and passwords are protected by
encryption procedures at the client
and server sides.

Denial of Service
(DOS) prevention
module

* Each user's requests are limited
to a certain number during a
certain period of time to prevent
DOS attacks.
* A registration email is sent to an
email address during registration
to prevent a single user from
having multiple user accounts.

Automatic logout
module

When the user is inactive for a
certain amount of time, the
application automatically logs out
the user to prevent spoofing
identity.

Static testing with
Fortify SCA
(Static Code
Analyzer)

As part of testing, the code is
tested with Fortify SCA.

Acknowledgement
This work has been supported through the National
Science Foundation CCLI/TUES grant (Grant # DUE-
0941959) on "Incorporating Systems Security and
Software Security in Senior Projects". The views and
conclusions contained in this document are those of
the author and should not be interpreted as necessarily
representing the official policies, either
expressed or implied, of the funding agency.

6. REFERENCES

[1] Computer Science Curricula 2013, Ver. 1.0,

http://ai.stanford.edu/users/sahami/CS2013/ironman
-draft/cs2013-ironman-v1.0.pdf.

[2] K. M. Goertzel, "Introduction to Software Security",
https://buildsecurityin.us-cert.gov/introduction-
software-security.

[3] A. Hazeyama and H. Shimizu, "A Learning
Environment for Software Security Education", In
Proc. of the 5th International Conference on
Secure Software Integration and Reliability
Improvement - Companion, 2011, pp. 7-8.

[4] C. Y. Lester and F. Jamerson, "Incorporating
Software Security into an Undergraduate Software
Engineering Course", In Proc. of the 3rd
International Conference on Emerging Security
Information, Systems and Technologies, 2009, pp.
161-166.

[5] C. Y. Lester, "A Practical Application of Software
Security in an Undergraduate Software Engineering
Course", International Journal of Computer
Science Issues, Vol. 7, No. 7, 2010, pp. 1-10.

[6] G. M. McGraw and N. R. Mead, "Engineering
Security into the Software Development Life Cycle",
CrossTalk: The Journal of Defense Software
Engineering, Vol. 18, No. 10, 2005, pp. 4.

[7] N. Meghanathan, H. Kim, and L. A. Moore,
"Incorporation of Aspects of Systems Security and
Software Security in Senior Capstone Projects", In
Proc. of the 9th International Conference on
Information Technology - New Generation, 2012,
pp. 319-324.

[8] R. Shumba, J. Walden, S. Ludim C. Taylor, and A. J.
A. Wang, "Teaching the Secure Development
Lifecycle: Challenges and Experiences", In Proc. of
the 10th Colloquium for Information Systems
Security Education, 2006, pp. 116-123.

[9] M. L. Stamat and J. W. Humphries, "Training ≠
Education: Putting Secure Software Engineering
Back in the Classroom", In Proc. of the 14th
Western Canadian Conference on Computing
Education, 2009, pp. 116-123.

[10] M. A. Talib, A. Khelifi, and L. Jololian, "Secure
Software Engineering: A New Teaching Perspective
based on the SWEBOK", Interdisciplinary Journal
of Information, Knowledge, and Management,
Vol. 5, 2010, pp. 83-99.

[11] J. Walden and C. E. Frank, "Secure Software
Engineering Teaching Modules", In Proc. of the
3rd Annual Conference on Information Security
Curriculum Development, 2006, pp. 19-23.

[12] S. S. Yau and Z. Chen, "Software Security:
Integrating Secure Software Engineering in
Graduate Computer Science Curriculum", In Proc.
of the 10th Colloquium for Information Systems
Security Education, 2006, pp. 124-130.

[13] H. Yu, N. Jones, G. Bullock, and X. Y. Yuan,
"Teaching Secure Software Engineering: Writing
Secure Code", In Proc. of the 7th Central and
Eastern European Software Engineering
Conference in Russia, 2011, pp. 1-5.

