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ABSTRACT 
 

This paper derives optimal production-shipment policy for a 
single-producer multi-retailer integrated inventory model with 
rework. We assume that a product is manufactured by a producer. 
All items are screened for quality assurance. Random defective 
items will be picked up and reworked in the same cycle when 
regular production ends. Upon entire lot is quality assured, 
multiple shipments are delivered synchronously to m different 
retailers in each production cycle. Each retailer has its own annual 
product demand, unit stock holding cost, and fixed and variable 
delivery costs. Mathematical modeling and analysis is used to 
derive the expected system cost. The Hessian matrix equations are 
employed to prove the convexity of cost function. A closed-form 
optimal production-shipment policy that minimizes total expected 
costs for such a specific integrated inventory model is obtained. 
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1.  INTRODUCTION 
 
In real-life business environments, it is common to have a supplier 
who provides a product to its several retailer clients. In this type 
of supply chains, management will be pleased to figure out the 
best production-shipment policy in order to minimize the expected 
integrated system costs. Schwarz [1] first studied a one-warehouse 
N-retailer deterministic inventory system with the objective of 
deriving the stocking policy that minimizes the long-run average 
system cost per unit time. The optimal solutions along with a few 
necessary properties are derived for such a one-retailer and N 
identical retailer problems. Heuristic solutions for the general 
problem were also suggested. Production lot size was not 

considered in his model. Goyal [2] considered an integrated 
inventory model for a single supplier-single customer problem. A 
method was proposed for solving those inventory problems, 
wherein a product made by a single supplier is procured by a 
single customer. A numerical example was provided to verify his 
solution process. Banerjee [3] investigated a joint economic 
lot-size model for purchaser and vendor, with the focus on 
minimizing the joint total relevant costs. He concluded that a 
jointly optimal ordering policy, together with an appropriate price 
adjustment, could be economically beneficial for both parties, but 
definitely not disadvantageous to either party. Kim and Hwang [4] 
developed formulation of a quantity discount pricing schedule for 
a supplier. They assumed a single incremental discount system 
and proposed an algorithm for deriving an optimal discount 
schedule. They investigated cases in which both the discount rate 
and the break point are unknown and either one is prescribed, and 
used numerical example to illustrate their algorithm. Cetinkaya 
and Lee [5] presented an analytical model for coordinating 
inventory and transportation decisions in vendor-managed 
inventory (VMI) systems. They considered a vendor realizing a 
sequence of random demands from a group of retailers located in 
a given geographical region. They assumed that the vendor has the 
autonomy of holding small orders until an agreeable dispatch time 
with the expectation that an economical consolidated dispatch 
quantity accumulates. As a result, the actual inventory 
requirements at the vendor are partly dictated by the parameters of 
the shipment-release policy in use. The optimum replenishment 
quantity and dispatch frequency were simultaneously derived, and 
a renewal theoretic model for the case of Poisson demands was 
developed together with some analytical results for their model. 
Other studies in the related fields have also been extensively 
carried out to address various aspects of vendor-buyer supply 
chain issues [6-13]. 
 



  

Another special focus of the present study is the manufacturer’s 
product quality. The classic economic production quantity (EPQ) 
model assumes a perfect production [14-16]. However, in a real 
life manufacturing environment, due to different unpredictable 
factors it is inevitable to have random defective items produced. 
In this study all nonconforming items are reworked and repaired 
in order to assure the entire finished lot has the expected quality. 
Many studies have been conducted during past decades to address 
different aspects of imperfect production systems with quality 
assurance issues [17-24]. 
 
The purpose of this study is to simultaneously determine the 
optimal production lot-size and optimal number of shipments that 
minimizes the total expected system costs for such a single- 
producer multi-retailer integrated inventory system with a rework 
process. Little attention has been paid to this specific issue, the 
present paper is intended to bridge the gap. 
 
 
2. ASSUMPTION & MATHEMATICAL MODELING 

 
This study examines a single-producer multi-retailer integrated 
inventory system with a rework process. We assume that a product 
can be made at an annual production rate P by the producer, and 
the production process may randomly generate an x portion of 
defective items at a production rate d. All items produced are 
screened and the inspection expense is included in the unit 
production cost C. All defective items are assumed to be 
re-workable at a rate of P1, and a rework process starts right after 
the end of regular production, in each cycle. Under the normal 
operation, to prevent shortages from occurring, the constant 
production rate P must satisfies (P-d-λ)>0 or (1-x-λ/P)>0, where λ 
is the sum of annual demands of retailers and d can be expressed 
as d=Px. 
 
Unlike the classic EPQ model assumes a continuous inventory 
issuing policy for satisfying demand, this study considers a 
multi-shipment policy, and finished items can only be delivered to 
the retailers when the entire lot is quality assured in the end of 
rework process. Each retailer has its own annual demand rate λi. 
Fixed quantity n installments of the finished batch are delivered to 
multiple retailers synchronously at a fixed interval of time during 
the downtime t3 (refer to Figure 1). Cost parameters used in this 
study are as follows: the production setup cost K, unit holding cost 
h, unit production cost C, unit cost CR and unit holding cost h1 for 
each reworked item, the fixed delivery cost K1i per shipment 
delivered to retailer i, unit holding cost h2i for item kept by retailer 
i, and unit shipping cost Ci for item shipped to retailer i. 
Additional notation is listed below: 
 

H1 = level of on-hand inventory in units when regular 
production process ends, 

H = maximum level of on-hand inventory in units when the 
rework process ends, 

t1 = the production uptime for the proposed system, 
t2 = time required for reworking the nonconforming items 

produced in each cycle, 
t3 = time required for delivering all quality assured finished 

products to retailers, 
Q = production lot size per cycle, a decision variable (to be 

determined), 
n  = number of fixed quantity installments of the finished 

batch to be delivered to retailers for each cycle, a 
decision variable (to be determined), 

m  = number of retailers, 

tn = a fixed interval of time between each installment of 
finished products delivered during downtime t2, 

T = production cycle length, 
I(t) = on-hand inventory of perfect quality items at time t, 
Ic(t)= on-hand inventory at the retailers at time t, 
TC(Q,n) = total production-inventory-delivery costs per cycle 

for the proposed system, 
E[TCU(Q,n)] = total expected production-inventory-delivery 

costs per unit time for the proposed system. 
 

 
 
Fig. 1 On-hand inventory of perfect quality items in producer 

side 
 
From Figure 1, the following equations can be directly obtained: 
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The on-hand inventory of defective items during production 
uptime t1 is 

1 1 .dt Pxt xQ= =        (8) 
 

Cost for each delivery to m retailers is 
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Total delivery costs of n shipments to m retailers in a production 
cycle are 
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The variable holding costs for finished products kept by the 



  

manufacturer, during the delivery time t3 where n fixed-quantity 
installments of the finished batch are delivered to customers at a 
fixed interval of time, are as follows [25]. 
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Total stock holding costs for products kept by the retailers during 
the cycle are (see Figure 2). 
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Fig. 2 On-hand inventory in m retailer sides 
 
 

Total production-inventory-delivery cost per cycle TC(Q,n) 
consists of the setup cost, variable production cost, the cost for the 
reworking, the fixed and variable delivery cost, holding cost 
during production uptime t1 and reworking time t2, and holding 
cost for finished goods kept by both the manufacturer and the 
customer during the delivery time t3. TC(Q,n) is 
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In order to take the randomness of defective rate into account, the 
expected values is used in cost analysis. Substituting all 
parameters from equations (1) to (12) in TC(Q,n) and with further 
derivations the expected cost E[TCU(Q,n)] can be obtained as 
follows: 
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3. DERIVING THE OPTIMAL OPERATING POLICY 
 
The Hessian matrix equations [26] is employed here to prove the 
convexity of E[TCU(Q,n)], that is to verify whether Eq. (15) 
holds. 
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From equation (14), one obtains 
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Substituting Eqs. (17), (19) and (20) in Eq. (15) one has 
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Equation (21) is resulting positive, because K, λ, and Q are all 
positive. Hence, E[TCU(Q,n)] is a strictly convex function for all 
Q and n different from zero. Therefore, the convexity of 
E[TCU(Q,n)] is proved, and there exists a minimum of 
E[TCU(Q,n)]. To simultaneously determine the production- 
delivery policy for the proposed single-producer multi-retailer 
integrated inventory model with a rework process, one can solve 
the linear system of Eqs. (16) and (18) by setting these partial 
derivatives equal to zero. Further derivations one obtains 
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It is noted that in real-world situation the number of deliveries 
takes on integer values only, however Eq. (23) results in a real 
number. In order to determine the integer value of n* that 

minimizes the expected system cost, two adjacent integers to n 
must be examined respectively [27]. Let n+ denote the smallest 
integer greater than or equal to n (derived from Eq.(23)) and n- 
denote the largest integer less than or equal to n. Substitute n+ and 
n- respectively in Eq. (22), then applying the resulting (Q, n+) and 
(Q, n-) in Eq. (14) respectively. By selecting the one that gives the 
minimum long-run average cost as the optimal replenishment- 
distribution policy (Q*, n*). An example is provided in next 
section to show the practical usage of the obtained results. 

 
 

4.  NUMERICAL EXAMPLE 
 

Consider that a product can be made by a producer at a production 
rate (P) of 60,000 units per year and the annual demands λi of this 
product from 5 different retailers are 650, 350, 450, 800, and 750 
respectively (total demand is 3000 per year). There is a random 
defective rate during production uptime which follows a uniform 
distribution over the interval [0, 0.3]. All nonconforming items are 
repairable during the rework process at a rate (P1) of 3600 per 
year. Values for additional parameters are 
 

K = $35000 per production run, 
C = $100 per item, 
h = unit holding cost at the producer side, $25 per item per 

year, 
h1 = unit holding cost for reworked item, $60 per item per 

year, 
CR = $60, cost for each items reworked, 
K1i = the fixed delivery cost per shipment for retailer i, they 

are $400, $100, $300, $450, and $250 respectively, 
h2i = unit holding cost for item kept by retailer i, they are $70, 

$80, $75, $60, and $65 per item respectively, 
Ci = unit transportation cost for item delivered to retailer i, 

they are $0.5, $0.4, $0.3, $0.2, and $0.1 respectively. 
 

We first determine the optimal integer number delivery for the 
proposed model by computing Eq. (23), one has n=4.51. Then by 
examining the aforementioned two adjacent integers to n and 
applying Eq. (22), one obtains (Q, n+)=(2310,5) and (Q, 
n-)=(2228,4). Finally, substituting these (Q, n+) and (Q, n-) in Eq. 
(14) respectively, and choosing the one that gives the minimum 
system cost, one obtains the optimal number of delivery n*=5, the 
optimal replenishment Q*=2310, and total expected cost 
E[TCU(Q*,n*)]=$438,211. 
 
Variation of Q and n effects on the optimal E[TCU(Q*,n*)] are 
illustrated in Figure 3. It is noted that as the random defective rate 
x increases, the optimal production lot size Q* decreases, but the 
expected system cost E[TCU(Q*,n*)] increases significantly. One 
also notes that the optimal number of delivery n* decreases as Q* 
decreases. 
 
 

5.  CONCLUDING REMARKS 
 
This paper studies a single-producer multi- retailer integrated 
inventory model with a rework process. In real world supply 
chains environments, it is usual to have a vendor supplies a 
product to multiple retailers, and during the production process 
generation of nonconforming items seems to be inevitable. 
Management of such an intra supply-chain system would certainly 
like to figure out the best replenishment-distribution policy so that 
the long-run average system cost is minimized. We proposed a 
solution procedure by the use of mathematical modeling and 
analysis to deal with the aforementioned supply chain system and 
a closed-form solution of the optimal production- shipment policy 



  

is obtained. Effects of various system parameters on the optimal 
solution are investigated in order to provide management with 
some insights of this specific single-producer multi-retailer 
integrated inventory model. 
 

 
 

Fig. 3 Variation of Q and n effects on the optimal 
E[TCU(Q*,n*)] 
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