
On Benchmarking the Matrix Multiplication Algorithm using OpenMP, MPI and CUDA 

Programming Languages 

Muhammed Al-Mulhem*, Abdulah AlDhamin**, and Raed Al-Shaikh** 

*Information & Computer Science Department, King Fahd University of Petroleum & Minerals, 

mulhem@kfupm.edu.sa 

**Saudi Aramco,raed.shaikh@aramco.com, abdulah.dhamin@aramco.com 

 

ABSTRACT 

Parallel programming languages represent a 

common theme in the evolution of high 

performance computing (HPC) systems.  There 

are several parallel programming languages that 

are directly associated with different HPC 

systems. In this paper, we compare the 

performance of three commonly used parallel 

programming languages, namely: OpenMP, MPI 

and CUDA. Our performance evaluation of these 

languages is based on the implementation of 

matrix multiplication algorithms. Matrix 

multiplication is chosen because of its wide 

application in many scientific and engineering 

problems such as bioinformatics, linear algebra, 

and computer graphics. Our results show that 

CUDA programming delivers up to 15 fold speed 

acceleration relative to OpenMP and MPI 

Programming. However, CUDA programming 

may prove comparatively more challenging to 

programmers. 

Keywords 

Bioinformatics, HPC, OpenMP, MPI, CUDA, 
GPGPU, Infiniband. 
 

1. INTRODUCTION 

In recent years, we have witnessed a 
growing interest in optimizing the parallel and 
distributed computing solutions using scaled-
out hardware designs and scalable parallel 
programming languages. This interest is 
driven by the fact that single CPU-chips are 
reaching their physical limits in terms of heat 
dissipation and power consumption. 
Therefore and as a continuation to Moore’s 
law, recent trends in high performance and 
grid computing have shown that future 
increases in performance can only be achieved 

through increases in systems scale using a 
larger number of components, which are 
supported by scalable parallel programming 
languages. Accordingly, scaled-out computing 
is clearly becoming the trend. 

On the parallel programming level, MPI 
OpenMP and CUDA have become the de facto 
standard to express parallelism in a program. 
OpenMP supports fork-and-join execution 
technique, where a program starts execution 
as a single process or thread. This thread runs 
sequentially until a parallelization directive 
for a parallel region is detected. At this stage, 
the thread creates a group of threads and 
elects itself as the master thread of the new 
group. All threads execute the program until 
the end of this parallel segment. 

Another program parallelization can be 
achieved through the message passing 
interface (MPI) [1] programming, which can 
be employed within and across several nodes. 
MPI is a widely accepted standard for writing 
message passing programs. It provides the 
user with a programming model where 
processes communicate with other processes 
by calling library routines to send and receive 
messages.  

The new GPU designs and CUDA are geared 
towards generic-programming methodologies, 
which was not possible in older generations of 
GPU architectures. What characterizes GPU 
systems is that they are fast and inexpensive 
when compared with conventional CPU-based 
clusters. For example, the newest nVidia GTX 
580 card is able to deliver a theoretical 1.5 
Tflops at around $500 [4].  

Our objective in this paper is to evaluate the 
three commonly used parallel programming 
languages, by implementing the parallel 

mailto:mulhem@kfupm.edu.sa


matrix multiplication algorithm and 
benchmarking the performance and scalability 
of the three implementations. We choose 
matrix multiplication because of its wide use 
in bioinformatics applications such as 
sequence alignment [6], analysis of microarray 
data [7], phylogenetic [8], MHC binding [9], 
motif finding [10], DNA protein binding [11]. 
To the best of our knowledge, this is the first 
paper that systematically benchmarks the 
three programming languages on the latest 
Intel’s Westmere technology and Infiniband 
QDR interconnect. 

The rest of the paper is organized as follows: 
In section 2, we show the performance 
evaluation and results. In section 3 we present 
the programming models used in this study. 
The last section states our conclusion and 
future work. 

2. PERFORMANCE EVALUATION AND 

RESULTS 

In our performance evaluation for OpenMP 
and MPI programming, we used a DELL cluster 
powered by PowerEdge M610 Blade Servers. 
The cluster consisted of 32 nodes with 2x 
sockets and Intel Hex-Core (Westmere) 
2.93GHz processors. Compute nodes were 
running RedHat Enterprise Linux Server 5.3 as 
the cluster operating system. Each node 
contained an Infiniband Host Channel Adapter 
(HCA) supporting 4x Quad Data Rate (QDR) 
connections with the speed of 32Gbps. Each 
node also had 24 GB (6 x 4GB) DDR3 1333Mhz 
of memory, thus the total amount of memory 
the system had was around 786GB. 

For the CUDA programming we used the 
GPGPU system equipped with GeForce 
GTX460 OC XLR8 black box with Nividia 
GF104 Fermi graphics processor. It has 1 GB 
memory, 336 cores and 256 bit memory bus. It 
is installed on HP Z800 workstation with Intel 
Xeon six-core processors X5680, 8GB 1333 
MHz DDR3 ECC unbuffered RAM and 2 TB 
SATA/300 N6Q hard disk. 

In our experiments, we used three versions 
of matrix multiplication codes [2, 3, 5] to 

benchmark the three programming languages. 
Although, it is computationally intensive with 

)( 3nO iterations, we chose the matrix 

multiplication since it is an integral part of 
many numerical linear algebra and 
bioinformatics applications. Its efficient 
implementation on parallel computers is an 
issue of prime importance when providing 
such systems with scientific software libraries.  

Figure 1 shows the OpenMP performance 
benchmark for multiplying 4000x4000 and 
5000x5000 size matrices. Initially, all runs 
were significantly improved when adding 
more cores, while their improvement slowed 
down when reaching 6 cores.  

 

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12

Size (5000x5000) Size (4000x4000)

Ti
m

e
 (

se
c)

No. of cores
 

Figure 1: OpenMP implementation. 
 

0
25
50
75

100
125
150
175
200

1 2 3 4 5 6 7 8 9 10 11 12

(50 00x5000) (4000x4000)

T
im

e
 (

s
e

c
)

Number of nodes
 

Figure 2: MPI implementation. 
 

Figure 2 shows the matrix multiplication 
performance using MPI programming. In this 
test, the code was compiled using MVAPICH 
MPI libraries. It is noticeable that the code on 
a single node/core took around 165 seconds, 
whereas it took only 150 seconds when 



running OpenMP on a single core. This is due 
to the fact that the MPI-based matrix 
multiplication C code has more routines and 
functions to call, making the code more 
complex, and thus more time to run. Another 
observation is the slight increase in the run 
time of the MPI compared with OpenMP when 
multiplying the 4000x4000 size matrices on 
11 and 12 cores. This increase is related to the 
additional communication overhead with 
respect to the computation time. This 
communication is lessened in the 5000x5000 
multiplication as the computation time gets 
larger with respect to the communication 
overhead.  

To magnify the effect of MPI communication 
overhead with respect to computation time, 
we extended the MPI matrix multiplication 
benchmark runs to 32 nodes. Figure 3 shows 
the effect of this communication overhead as 
the number of nodes increases.  

 

0

15

30

45

60

8 16 32

(5000x5000) (4000x4000)

T
im

e
 (

se
c)

Number of nodes
 

Figure 3: MPI scalability in 5000x5000 and 
4000x4000 matrix multiplication using up to 

32 nodes. 
 

 
Table 1 shows the CUDA matrix 

multiplication runs on the GPGPU hardware. It 
shows that CUDA programming delivers up to 
15 fold speed acceleration relative to OpenMP 
and MPI programming.  In comparison with 
the CPU threads in OpenMP, threads in CUDA 
are grouped into blocks, while blocks are 
grouped into grids. A kernel is executed as a 
grid of blocks of threads, given that threads in 
a block may cooperate by having shared 
memory accesses and also sharing the results.  

 

 

 

Table 1: CUDA implementation. 

Matri
x size 

Blocks/Grid Threads/Block Time 
(seconds) 

4000 16 16 1.732 
5000 8 16 4.911 

3. THE PROGRAMMING STRUCTURE 

In the field of HPC, the current hardware 
trend is to build clusters of complex 
programming environments and use parallel 
libraries, such as OpenMP, MPI and GPGPU 
programming. In this section, we compare the 
programming structure and complexity of the 
mentioned programming paradigms. 
1. OpenMP 

Open Multi-Processing programming, 
commonly known as OpenMP, is one of the 
major and widely used application program 
interfaces (APIs) to develop task-parallel 
applications, but can also be used to achieve 
data-parallelism through invoking work-
sharing constructs. OpenMP supports both 
shared memory multi-core systems and 
distributed shared memory systems, though it 
is not meant for distributed-memory systems 
by design.  

 
 

     Unlike pthreads, which is also designed to 
support shared-memory architecture, OpenMP 
is considered as a high-level extension to the 
standard ANSI C. It is composed of three API 
components: compiler directives, runtime 
routines, and environment variables. The 
directives define the portion of the code in the 
program that the developer wants to 
parallelize. Then, the compiler uses runtime 
library routines to explicitly tell the machine 
to perform the tasks. The tasks of thread 
creation, memory management, 
communication between threads and 
synchronization are all being taken care of by 



the compiler [2]. Hence, it is possible to have a 
C compiler that cannot compile OpenMP 
programs into parallel programs.  

The primary advantage of using OpenMP in 
parallelization is the fact that it allows 
developers to incrementally parallelize serial 
programs rather than re-writing them from 
scratch. 

 
 

2. MPI 

Message Passing Interface (MPI) is a set of 
parallel programming APIs, designed to 
develop parallel programs using high-level 
programming languages, most commonly used 
is the standard ANSI C, for distributed-
memory systems. Because of the nature of this 
environment, the interconnection networks 
plays a critical role on the performance of the 
program, which is the core medium for 
transferring messages between threads [3]. 
That said, the bandwidth and latency of the 
interconnects are very critical measures of 
how well the parallel application will perform 
with MPI. 

The key concept of the MPI is to provide a 
methodology of sharing data between 
processes or threads that do not share 
physical memory space, whereas the basic 
functions of the MPI is the send and receive 
methods between processes. Nevertheless, 
distributed-memory systems can also 
programmed to allow threads access memory 
regions belonging to another thread. This 
approach is called one-sided communication. 
A key element of the MPI model is a 
communicator, which is a set of processes that 
can send and receive messages between each 
other. MPI Collective Communication modes 
consist of: Tree-structured, Collective 
communication, Point-to-point 
communication, Broadcast and Data 
distribution. 

 
3. GPGPU 

     General-purpose computing on graphics 
processing units (GPGPU) is a programming 
model meant to use the graphics processing 
units (GPUs) as a co-processor to speed up the 
CPU performance for general-purpose 
scientific and engineering computing [5]. 
Specifically, GPUs takes custody of compute-
intensive and time-consuming portions of the 
code off the CPU, while leaving the CPU to 
compute the rest of the application. This 
programming model is a typical data-
parallelism approach specifically designed to 
support the Single Instruction Multiple Data, 
or SIMD, model. 

 
The fact that GPUs are designed specifically 

for graphics implies a certain restrictions on 
what operations and programming they 
provide. To get the best out of this approach, 
only computing problems that can be solved 
through stream processing will benefit the 
most. Stream processing is the programming 
paradigm that allows applications to exploit 
the parallelism by using other computational 
units, other than the CPU. In GPGPU paradigm, 
the application is divided into chunks of 
streams and kernels. Kernels are the functions 
applied to each element of the stream. In 
addition, because GPUs process elements in 
each stream independently, there is no 
support of shared or static data. On the other 
hand, the GPGPU model is differentiated from 
OpenMP and MPI, in that it utilizes a second 
computation unit that can scale to larger 
number of threads. 

The SIMD nature of the GPUs suggests some 
common characteristic about GPGPU 
applications is that they have large datasets, 
high parallelism with no or very minimal 
branching, and minimal data dependency 
between elements. 

The difference in the performance gain in 
GPU compared to CPU is based on the design 
philosophies between multi-core CPUs and the 
GPUs. While the former is designed to 
optimize the performance of sequential code 
in which cache memories play essential part to 



reduce instruction and data access latencies, 
the latter is optimized for parallel execution. 
In addition, GPUs deliver huge memory 
bandwidth, up to 10 times the bandwidth of 
CPU chips, as well as a significant 
communication bandwidth with the CPU, 
which is expected to increase as the CPU bus 
bandwidth grows in the future. 

In addition, the memory hierarchy in the 
GPGPU environment is different from the CPU 
computing, with three distinct layers: 

1. Global memory; to serve the grid I/O. 

2. Shared memory; to serve thread 

collaboration/communication. 

3. Registers; dedicated for thread space. 

 

There are several programming platforms 
for the GPGPU, most commonly used are CUDA 
by NVIDIA, DirectX by Microsoft, and the open 
source OpenGL. All of which share the same 
high level structure of program with 
differences in the specifications. 

4. CONCLUSION 

New multi-core processors represent one of 
the biggest advances in parallel computing. 
This advancement is driven by the fact that the 
microchip technology is gradually reaching its 
physical limitations in terms of heat 
dissipation and power consumption. In this 
paper, we compare the performance of three 
commonly used parallel programming 
languages used in HPC systems, namely: 
OpenMP, MPI and CUDA programming. The 
performance evaluation is based on running 
different sizes of the conventional matrix 
multiplication algorithm. Our results show 
that while GPU programming delivers 
unparalleled levels of performance, it poses a 
significant challenge for developers, in the way 
that it is still complex and error-prone, 
compared to programming on general-
purpose CPUs and using parallel programming 
models such as OpenMP. 

 
 

Acknowledgment 
The authors would like to thank King Fahd 
University of Petroleum & Minerals and Saudi 
Aramco for their support. 
 
REFERENCES 
 
[1] Liu J.,  et al. “Performance Comparison of 

MPI Implementations over InfiniBand, 
Myrinet and Quadrics”, Supercomputing, 
ACM/IEEE,  pages 58- 58, Nov. 2003. 

[2] Lawrence Livermore National Laboratory – 
OpenMP tutorial. Available at: 
https://computing.llnl.gov/tutorials/open
MP/ 

[3] Simple matrix multiplication on MPI. 
Available at: 
http://sushpa.wordpress.com/2008/05/2
0/simple-matrix-multiplication-on-mpi/ 

[4] Ryoo S., et. al., “Optimization Principles and 
Application Performance Evaluation of a 
Multithreaded GPU Using CUDA”, 
Proceedings of the 13th ACM SIGPLAN 
Symposium on Principles and practice of 
parallel programming, pages 73-82, Feb. 
20-23, 2008. Salt Lake City, Utah, USA. 

[5] GPU Nvidia, Available at: 
http://www.nvidia.com/object/what-is-
gpu-computing.html 

[6] Russo L., “Monge properties of sequence 
alignment”, Theoretical computer science 
423 (2012), pages 30-49. 

[7] Moloshok T., et.al., “Application of bayesian 
decompostion for analysing microarray 
data”, Bioinformatics, vol. 18, no. 4, 2002, 
pages 566-575. 

[8] Suchard M., et. Al., “Many-core algorithms 
for statistical phylogenetics”, 
Bioinformatics, vol. 25, no. 1, 2009, pages 
1370-1376. 

[9] Kim Y., et. Al., “Derivation of an amino acid 
similarity matrix for peptide: MHC binding 
and its application as a Bayesian prior”, 
BMC Bioinformatics 2009, 10:394, pages 1-
11. 

[10] Ribeca P. and Raineri E., “Faster exact 
Markovian probability function for motif 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10619
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10619
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
http://sushpa.wordpress.com/2008/05/20/simple-matrix-multiplication-on-mpi/
http://sushpa.wordpress.com/2008/05/20/simple-matrix-multiplication-on-mpi/
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html


occurrences: a DFA-only approach”, 
Bioinformatics, vol. 24, no. 24, 2008, pages 
2839-2848. 

[11] Teif V., “General transfer matrix fomalism 
to calculate DNA-protein-drug binding in 
gene regulation: application to OR 
operator of phage A”, Nucleic Acides 
Research, vol. 35, no. 11, 2007, pages 1-18. 


