
 
Document Agents with the Intelligent Negotiation Capability 

 
Jerzy KACZOREK and Bogdan WISZNIEWSKI  

 Department of Intelligent Interactive Systems,  
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology 

80-233 Gdansk, Poland 
 

ABSTRACT 
 

The paper focus is on augmenting proactive document-agents 
with built-in intelligence to enable them to recognize execution 
contexts provided by devices visited during the business 
process, and to reach collaboration agreement despite of their 
conflicting requirements. We propose a solution based on 
intelligent bargaining based on neural networks to improve 
simple multi-issue negotiation between the document and the 
device, practically with no excessive cost to the agent with 
limited RAM and CPU resources.     
 
Keywords: Proactive Document, eCollaboration, Mobile 
Computing. 
 

1.  INTRODUCTION 
 
Individuals, who collaborate in a network organization, interact 
by exchanging electronic documents that constitute units of 
information, and at the same time units of interaction. This 
dichotomy has become apparent with the advent of active 
documents, often implemented as software agents. In particular, 
our mobile interactive document (MIND) [4] can migrate over 
the network and carry both, the content to be worked on and 
specification of its migration path with activities and 
transitions. Each activity represents a piece of work to be 
performed by the receiving user (knowledge worker) with the 
incoming document content, whereas transition indicates where 
the outgoing document, constituting a result of the activity, 
should migrate next.  
 

Successful completion of each activity depends on the 
intentions of the document originator, operational 
characteristics of the device, as well as preferences of the 
knowledge worker responsible for the current processing step. 
A proactive MIND document can handle that in several ways: 
activity may be performed automatically by its embedded code 
– if allowed by the worker operating his/her device, may be 
performed manually by the worker using local services or tools 
installed on that device, or the device may call some external 
(third party) service requested by the document – if the Internet 
connection is available at the time of executing the activity. 
Owing to that, the agents – proactive MIND documents and 
execution devices alike – may exhibit specific beliefs and 
desires [3]; we represent them with bargaining sets and 
policies.   
 
Attributes of execution contexts  
When a proactive document and its execution device have 
different beliefs and desires with regard to what resources 
should be provided to perform the actual activity some 
consensus must be found. The conflict arises when the 
document wants to get from the device as much computational 
power and resources as possible, while the latter would like to 
complete the activity at the lowest possible cost, e.g., with 
regard to the battery power, network bandwidth consumption, 
and with the minimum risk of compromising its security, among 

others. In other words, the execution context must be found that 
satisfies both parties: the document and the device. When doing 
that the parties search the set of possible execution contexts for 
the one that may be agreed; we call that set the bargaining set. 
Elements of the bargaining set are m-vectors, called offers. Each 
offer 𝑜𝑜 =< 𝑣𝑣1, … ,𝑣𝑣𝑚𝑚 >, consists of values 𝑣𝑣𝑖𝑖, i=1,…,m, 
selected from the respective sets Ai, representing attributes of 
the execution context. In our model we distinguish five 
attributes: who shall be the actual performer of the activity (A1), 
what is the current network availability (A2), its performance 
characteristics (A3), the current execution device security (A4) 
and its possible reliability levels (A5). They suffice to 
characterize a fairly wide range of classes of execution devices 
and proactive documents [5]. Moreover, policy rules define 
partial ordering of offers and specify which combinations of 
attribute values are allowed in the offers and which are not. We 
have formally defined these rules for specific classes of devices 
and documents.  
 
There are five classes of devices in our model: workstations 
(x1),  laptops (x2), tablets (x3), smartphones (x4) and cellphones 
(x5). Each device class has a related subset of values that each 
respective attribute may assume. These subsets are denoted by 
unique labels that may appear in the respective levels of the 
option tree; combinations of these labels make the bargaining 
sets specific to the particular class of devices. Policy rules 
determine partial ordering of offers, and are of the form 
𝑋𝑋𝑖𝑖 → {𝑌𝑌𝑖𝑖+1, … ,𝑍𝑍𝑖𝑖+1}, where 𝑋𝑋𝑖𝑖⊂ 𝐴𝐴𝑖𝑖, 𝑌𝑌𝑖𝑖+1, … ,𝑍𝑍𝑖𝑖+1⊂ 𝐴𝐴𝑖𝑖+1 are 
subsets of the respective attribute value sets, and curly braces {} 
denote ordering of the respective attribute value labels. For 
example, Table 1 specifies the policy of laptop devices (x2), 
implemented in our MIND system.  
 

Table 1: Example of the laptop policy (x2) 
Attribute set Rules 

A1 Performer ε → {W[1-2],J[1-4],D[1-3]} 
A2 Availability {W[1-2],J[1-4],D[1-3]}→{I[1-7],E[1-7]} 

A3 Performance {I[1-7],E[1-7]} → 
{N[1-4], R[2,4], A[1-4],M[1-4]} 

A4 Security {N[1-4], R[2,4], A[1-4],M[1-4]} →  
{C[1-4],T[1-4], K[1-4],P[1-4]} 

A5 Reliability {C[1-4],T[1-4], K[1-4],P[1-4]} → 
{H[1-4],F[1-4], B[1-4],L[1-4]} 

 
Regular expressions in the table denote a range of labels, e.g., 
D[1-3] denotes D1,..,D3, or a list of labels, e.g., R[2,4] denotes 
R2 and R4. Each single label represents a concrete subset of 
attribute values. In particular, for the ‘performer’ attribute, 
labels D[1-3] denote various subsets of values relevant to the 
autonomous execution of the activity by the document, without 
any help from the worker using the execution device, whereas 
J[1-4] refer to various execution contexts requiring interaction 
between the document and the worker. For the ‘availability’ 
attribute, labels I[1-4] and E[1-4] refer to various types of 
network connections (from inside of the host organization or 
external to it) that are available during execution. For the 
‘performance’ attribute,  label R2 denotes a concrete value 



indicating that a wireless network and excessive RAM may be 
provided, and so on. The rationale for partitioning the attribute 
value sets for the respective classes of devices has been 
explained in detail in [6], and is beyond the scope of this paper.  
 

We have also defined four classes of documents, based on the 
following two characteristics. One is that the document content 
may be protected (P) or open (O) – depending on whether it 
does or does not need any secure connection to perform the 
activity, another is that it may impose a heavy (H) or light (L) 
load on the device – depending on whether it requires CPU 
power and the amount of RAM above some average level or 
not. For example, Table 2 specifies the policy of a proactive 
document which content is protected and light (dPL).  
 

Table 2: Example policy of dPL proactive documents 
Attribute set Rules 

A1 Performer ε → { J[1-4],D[1-3]} 
A2 Availability {J[1-4],D [1-3]} → {I1,E1} 
A3 Performance {I1,E1} → {N[1-4],R[1-4],A[1-4],M[1-4]} 

A4 Security {N[1-4],R[1-4],A[1-4],M[1-4]} → 
{C[1-4],T[1-4], K[1-4]} 

A5 Reliability {C[1-4],T[1-4], K[1-4]} → {H[3-4],B[3-4]} 
  
The rest of the paper is structured as follows. Further in Section 
1 the method of modeling preferences of negotiating parties is 
outlined. Section 2 introduces rules for the simple bargaining 
game and its basic implementation algorithms. In Section 3 the 
method for the intelligent selection of offers based on neural 
networks is proposed. Experiments evaluating the method are 
described in Section 4, while Section 5 provides a short survey 
of the related work in the area of intelligent negotiation. Section 
6 concludes the paper. 
 
Document-agent execution 
The way the document activity is performed on the device 
where the mobile document is currently located, depends on the 
document functionality, operational characteristics of the device 
currently in use, and preferences of the worker (person) 
handling the device and expected to perform (or at least accept 
the outcome of) the current processing step. Combinations of 
these factors define specific execution contexts which may 
vary, since the same person may use different devices when 
performing activities of the same business process, e.g., using a 
workstation when in office, a smartphone during travel between 
office and home, and a laptop at home. User preferences for the 
same device may depend on its current location, often 
conflicting with document agents’ policies.  
 
Multi-item bargaining 
In a loosely-coupled distributed system, like the multi-agent 
system described above, resolution of possible conflicts 
between document-agents and execution devices should rather 
not rely on any external Web service. This is because mobile 
devices may often be out of a trusted network (or any network 
at all) or the connection available to them may be too costly (if 
only a cellular network is possible), not mentioning the security 
and privacy problems, as activities of documents might be 
traced from outside of the business process. We propose to 
resolve conflicts between documents and devices by the means 
of negotiation [6]. The document-agent and its execution device 
exchange offers and counter-offers, and systematically search 
the space of possible contracts. However, this setting is non-
cooperative: negotiating parties have mutually incomplete 
information on their preferences, as they keep them in secret 
and want to get individually as much wealth as possible. Such 
an alternating-offer protocol is modeled by us as a bilateral 

multi-stage simple bargaining game (SBG) [6]. Players 
exchange offers from the bargaining set they share.  
 
Each player uses an option tree to model its individual 
preferences in the bargaining set, as shown in Figure 1. 
Attributes correspond to levels of the tree, with possible values 
of each attribute listed at its respective level. A path in the 
option tree defines a concrete offer combining these values, 
e.g., offers o3=<D3,I1,N4,T4,H3> and o4=<D3,E1,A4,C3,B4>. 
The bargaining set in Figure 1 is 𝐶𝐶𝐵𝐵 = {𝑜𝑜1, 𝑜𝑜2, 𝑜𝑜3, 𝑜𝑜4, 𝑜𝑜5}. Each 
negotiating party has its own option tree, specifying the 
preferred order of all possible offers in CB. In the example tree, 
offer o3 is the most preferred, whereas o4 is the least preferred 
one. Neither player reveals the ordering of offers in its tree to its 
opponent.  
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Figure 1: An example option tree and offers of player Pi 

 
Each player Pi, i=1,2, determines the ordering of offers in its 
tree with its private utility function, 𝑈𝑈𝑖𝑖: 𝐶𝐶𝐵𝐵 → (0,1]. For 
example, in Figure 1 utility 𝑈𝑈𝑖𝑖(𝑜𝑜3) = 1.0, while 𝑈𝑈𝑖𝑖(𝑜𝑜4) = 0.2, 
 

2.  SIMPLE BARGAINING GAME 
 
Players are rational, i.e. when making offers each one starts 
from the most valued offer in its respective option tree and 
concedes in successive rounds until offer 𝑜𝑜𝑐𝑐 ∈ 𝐶𝐶𝐵𝐵 is agreed, 
such that: 

 𝑜𝑜𝑐𝑐 = arg max
𝑜𝑜∈𝐶𝐶𝐵𝐵

𝑈𝑈1(𝑜𝑜)𝑈𝑈2(𝑜𝑜), (1) 
 

maximizes utilities of both players [6].  
 
Formally, the objective of negotiating parties P1 and P2 is to  
find in the given bargaining set a solution to Eq. (1) under 
assumption that neither party knows its opponent’s utility 
function. In order to do that, the execution device (player P1) 
and the document-agent (player P2) play the SBG game 
according to the following rules: 
 

1) The game is started by P1 (the execution device); 
2) Both players, P1 and P2, keep in secret their private 

information, including their respective utility functions U1 
and U2, and discount factors δ1 and δ2, but share knowledge 
on the bargaining set CB ; 

3) Utility values of players’ offers are discounted at each 
transition to the next stage;  

4) Players exchange offers until the game is concluded, i.e., 
one of the players accepts an offer or quits the game; 

5) The game may be concluded by any player P1 or P2, when:  
a. it repeats its opponent’s offer received in any 

preceding stage, what implies accepting the offer as 
the agreed contract, 



b. it repeats its own offer submitted in any preceding 
stage, what implies quitting the game, without 
agreeing any contract. 

 

Implementation of the above rules is fairly simple: the game is 
sequential and the device alternate with the document by calling 
function submitOffer, as shown in the listing of Algorithm 1. 
The incoming MIND document-agent brings to the execution 
device its private implementation of the submitOffer function, 
embedded in its code. Another private implementation of this 
function is located on the device. Both implementations are 
called by the email client handling the document and executing 
function playSBG before allowing the document to perform its 
principal activity. Function submitOffer selects elements from 
the bargaining set 𝐶𝐶𝐵𝐵 = 𝐶𝐶1 ∩ 𝐶𝐶2, where C1 and C2 are sets of 
offers defined by the respective option trees of P1 and P2.  
 

Algorithm 1: playSBG 
1: Data:   

  CB: bargainig set;  
  P1.CR: offers received by the device;  
  P1.CS: offers submitted by the device;  
  o1: current offer of the device;  
  P2.CR: offers received by the document;  
  P2.CS: offers submitted by the document;  
  o2: current offer of the device;  
  k: current move number; 

2: Result: agreed contract and the final move number; 
3: k ← 0; 
4: o2 ← null; 
5: while o1 ≠ o2 do 
6:  o1 ← submitOffer(CB,P1.CR,P1.CS,o2,k) ; 
7:  if o1= o2 then 
8:   return [o1,k]; 
9:  k ← k+1; 

10:  o2 ← submitOffer(CB,P2.CR,P2.CS,o1,k) ; 
11:  if o1= o2 then 
12:   return [o2,k]; 
13:  k ← k+1; 

   

 
Since any offer in CB can be accepted by either player, the rule 
5b listed above will never have to be applied and is skipped. 
 

Simple selection of offers 
When systematically searching the bargaining set CB for the 
solution of Eq. (1), each player has to decide whether to accept 
one of the offers already received from its opponent, kept in its 
set CR, or to select the offer not yet received from its opponent 
(nor submitted earlier to it, as it would imply quitting the 
game), kept in the set 𝐶𝐶𝑁𝑁 = 𝐶𝐶𝐵𝐵 − (𝐶𝐶𝑅𝑅 ∪ 𝐶𝐶𝑆𝑆). The decision is 
made in line 19 of Algorithm 2, implementing a simple 
selection of offers.  
 

Algorithm 2: submitOffer (simple) 
1: Data:   

  CB: bargainig set;  
  CR: offers received by the player;  
  CS: offers submitted by the player; 
  CN: offers not submitted nor received yet;  
  o: offer submitted by the player’s opponent; 
  δ: discount factor of the player;  

2: Result: if the opponent’s offer is accepted it is returned as 
the agreed contract, otherwise a counter-offer not yet 
submitted is returned;  

3: if o = null then 
4:  {start from the best offer} 
5:  o ← max(CB); 
6:  return o;  
7: else 
8:  if o ∈ CS then 
9:   {last offer accepted by the opponent} 

10:   return o; 
11:  CR ← CR ∪ {o}; 
12:  o' ← max(CR); 
13:  CN ← CB − (CR ∪ CS); 
14:  if CN=∅ then 
15:   {accept the best received offer} 
16:   return o'; 
17:  else 
18:   o'' ← max(CN); 
19:   if U(o') ≥ δ⋅U(o'') then 
20:    {the incoming offer is better than the 

discounted future one} 
21:    return o'; 
22:   else 
23:    CS ← CS ∪ {o''}; 
24:    return o''; 

   

 
Notice that the simple selection implemented by Algorithm 2 
may often search the entire CB, to the last possible element, 
before making a decision on what offer to accept. If the 
bargaining set is large, and the players option trees are sorted in 
the opposite order to each another, the game may have as many 
as ⌈|𝐶𝐶𝐵𝐵|/2⌉ stages. The question is whether the number of 
stages can be reduced.      
 

Prospect estimation  
Note that in Algorithm 2, further exploration of the CN subset of 
CB, thus considering continuation of the game, may not be 
worthwhile if the utility function of the player making that 
decision strongly decreases in the CN part of its option tree. In 
such a case it may be reasonable to accept the best offer from 
the ones already submitted by the opponent and kept in CR. This 
idea is implemented by Algorithm 3.    
 

Algorithm 3: submitOffer (estimated) 
1: Data:   

  CB: bargaining set;  
  CR: offers received by the player;  
  CS: offers submitted by the player; 
  CN: offers not submitted nor received yet;  
  o: offer submitted by the opponent (initially empty); 
  δ1: discount factor of the device player; 
  δ2: discount factor of the document player; 
  k: current step number; 
  λ: cumulative discount factor; 

2: Result: if the opponent’s offer is accepted it is returned as the 
agreed contract, otherwise a counter-offer not yet submitted is 
returned;  

3: if o = null then 
4:  {start from the best offer} 
5:  o ← max(CB); 
6:  return o;  
7: else 
8:  CN ← CB − (CR ∪ CS); 
9:  o' ← max(CN); 

10:  if o' = o then 
11:   { accept the opponent’s offer} 
12:   return o; 
13:  else 
14:   {consider utility of all remaining offers } 
15:   CN ← CN − {o, o'}; 
16:   CR ← CR ∪ {o}; 
17:   o'' ← max(CR); 
18:   Usum ← 0; 
19:   λ  ← discount(|CN|,k+1, δ1,δ2); 
20:   foreach oc ∈ CN do 
21:    Usum ← Usum + δ1⋅(λ⋅U(oc) + (1 − λ)⋅U(o)); 
22:   if Usum / |CN| > U(o'') then 
23:    {if there are still valuable offers submit the new 

one} 
24:    return o'; 



25:   else 
26:    {accept the best received offer}; 
27:    return o''; 

   

 
Function discount, called in line 19, evaluates the cumulative 
discount if the player decides to submit offers from CN in future 
rounds, used next to calculate the average payoff of all such 
prospective offers. The loop in line 20, which calculates the 
formula in line 21, is the iterative version of the recursive 
formula implementing the regressive outguessing aimed at 
evaluating all possible outcomes of SBG when continued from 
the step following the one currently performed [7]. Algorithm 3 
was used by us to simulate SBG when comparing it with the 
intelligent bargaining utilizing knowledge on the opponent’s 
preferences, learned during previous encounters (see Algorithm 
4). However, the cost of reducing the number of stages in 
Algorithm 3 is that the estimation of prospect offers by the 
player requires knowing the discount factor of its opponent. It 
may be either assumed to be the same, or the additional 
procedure to guess it during negotiation should be applied. The 
latter is beyond the scope of this paper, but is realistic to 
implement [7].     
 

3.  INTELLIGENT BARGAINING GAME 
 
We propose a further improvement of our SBG game [6] by 
utilizing machine learning mechanism based on neural 
networks; the latter have been demonstrated in the literature to 
require quite moderate computational and storage resources [8]. 
In that research, however, it was assumed that no a-priori 
knowledge on the opponent existed, thus only on-line training 
during the actual encounter was considered. In consequence, the 
learning capability of negotiation agents concentrated on 
predicting better offers, i.e., offers that might faster lead to the 
contract based on the offers submitted by the opponent during 
the initial series of rounds of the actual encounter [8]. In 
contrast to that, we advocate the approach based on policies, 
which enable generation of training sets for the neural network 
before the encounter takes place; these sets could be much 
richer than those available to the negotiating document-agent 
during its actual encounter with the device. In consequence, our 
intelligent negotiation agent may be expected to perform far 
better than the one that learns to negotiate after the negotiation 
has started – especially when it lacks any significant 
computational resources.   
 
Recognition of execution devices 
Execution devices are recognized based on their bargaining 
sets, modeled as occurrence vectors – binary bit-words 
indicating the presence or absence of each possible attribute 
value in any offer recorded in the negotiation history during the 
training phase. This idea is illustrated in Figure 2.  
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Figure 2: Device class recognition 

 
Negotiation histories for the training set are generated based on  
the policies for each specific device class, and enable training 

the agent before starting its mission. Module M1 builds a bit-
word of the form 𝛽𝛽 = ω1 …ω5, where each respective bit-field 
ω𝑖𝑖 consists of flags ω𝑖𝑖[1] …ω𝑖𝑖[|𝐴𝐴𝑖𝑖|], indicating whether the 
respective attribute value 𝑣𝑣𝑖𝑖

𝑗𝑗 occurred in offers submitted by the 
device. The network is trained with thus obtained occurrence 
vectors to recognize classes of devices, based on characteristic 
combinations of attribute values in bargaining sets of each 
possible class of devices.   
 
Prediction of contracts 
Once the execution device class is recognized the neural 
network may be set up to recognize the sequence leading to the 
contract. We base this analysis on recognizing binary relations 
between each pair of offers in the sequence. Each device class 
requires a separate neural network, of the same number of 
layers and neurons but with different weights. This is the key 
asset of our method, to which we will return in the next section. 
Figure 3 illustrates a general scheme for training the network to 
predict contracts based on input sequences. 
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Figure 3: Contract prediction 

 
Module M2 generates all possible pairs of offers used to train 
the network to recognize their precedence relations. Offers in 
each pair (𝑜𝑜′, 𝑜𝑜′′) have the respective labels of their attribute 
values coded with the unique natural numbers, so each pair is 
represented as the 10-element vector of natural numbers. Two 
complete sets of such vectors are generated based on the set of 
sequences recorded when playing SBG over the particular 
bargaining set: one for vectors where 𝑜𝑜′ precedes 𝑜𝑜′′ (𝑜𝑜′ < 𝑜𝑜′′), 
and another where 𝑜𝑜′ succeeds 𝑜𝑜′′ (𝑜𝑜′ > 𝑜𝑜′′). When trained with 
pairs from the bargaining set and precedence relations from the 
negotiation history, the network is able to guess precedence 
relations based on the bargaining set under test. Module M3 
uses the recognized relation vectors to reconstruct the predicted 
sequence of offers. The sequence can be used next by the player 
to choose offers in the more informed way than in the case of 
simple bargaining.  
 
Informed selection 
Module M4 in Figure 3 implements the following algorithm: 
  
Algorithm 4: submitOffer (informed) 

1: Data:   
  CB: bargaining set;  
  CR: offers received by the player;  
  CS: offers submitted by the player; 
  CN: offers not submitted nor received yet;  
  o: offer submitted by the opponent (initially empty); 
  k: current step number; 
  nnSeq: sequence predicted by the neural network;  

2: Result: if the opponent’s offer is accepted it is returned as 
the agreed contract, otherwise a counter-offer predicted by 
the supporting neural network is returned. 

3: if o = null then 
4:  {start from the best offer} 
5:  o ← max(CB); 
6:  return o; 



7: else 
8:  CN ← CB − (CR ∪ CS); 
9:  CN ← CN − {o }; 

10:  CR ← CR ∪ {o}; 
11:  o'' ← max(CR); 
12:  Umax ← 0; 
13:  foreach oc ∈ CN do 
14:   {use the predicted sequence to find the offer leading 

to the maximum payoff} 
15:   otmp ← simulateSBG(oc,k+1,nnResp); 
16:   if U(otmp) > Umax then 
17:    Umax ← U(otmp); 
18:    o' ← oc; 
19:  if Umax > U(o'') then 
20:   CN ← CN – { o'}; 
21:   {submit the predicted counter-offer} 
22:   return o'; 
23:  else 
24:   {accept the opponent’s offer} 
25:   return o''; 

   

 
When comparing Algorithms 3 and 4, it may be seen that 
instead of estimating the average payoff of all prospective 
offers from the unexplored part CN of the bargaining set, the 
prospective offer with the maximum payoff is searched (the 
loop in line 13), based on the sequence of the opponent’s offers 
predicted by the network.  
 

4.  SIMULATION EXPERIMENTS 
 

In the experiments we assumed that when playing SBG, as 
specified by Algorithm 1, the document-agent implemented its 
submitOffer function using Algorithm 4, while the device 
implemented Algorithm 3. In order to do that, the document-
agent needed one neural network to recognize device classes 
and five neural networks (one for each device class) to 
recognize sequences. In practice, all these six classification 
tasks were accomplished effectively with just two networks, 
one for recognizing classes of devices, and another for 
recognizing sequences. The latter network required a 
dynamically changed set of weights to adjust it to recognize 
sequences of the specific device class, once it has been 
recognized by the document. In consequence, only the 
“knowledge” on how to make informed selection of offers had 
to be brought by the document to the device, along with the 
content to work on, whereas the network execution facility was 
provided by the device, running the specialized email client 
responsible for handling MIND documents [4]. The network 
required to classify devices (see Figure 2) consisted of the input 
layer of 20 neurons, one hidden layer of also 20 neurons, and 
the output layer of nine neurons, with the total of 2269 weights 
and biases to set it up. The network capable of classifying  
sequences (see Figure 3) consisted of the input layer of 10 
neurons and the output layer with one neuron, requiring the 
total of 1766 weights and biases to set it up. Given the Java 
single-precision 32-bit IEEE 754 floating point representation 
the document had to carry 4⋅1766=7064 bytes per device, or for 
all five device classes about 35KB of data. If the MIND 
documents were equipped also with the “knowledge” required 
to recognize device classes (instead of email clients handling 
them), the total extra load was less than 45KB – a negligible 
amount when compared to the typical size of attachments 
allowed by the present-day email systems.  
 
 In the experiments, we have concentrated on three 
characteristics of the intelligent document agent, namely its 
fitness level, measuring the ratio of devices correctly recognized 
by it, payoff of the contract guessed by the trained network 

compared to the one negotiated by the agent without any 
machine learning, and the cost measured as the time of training 
the network and the length of negotiation measured as the round 
number where the contract was agreed. Networks of various 
sizes have been tested to find the minimal number of layers and 
neurons to get the 100% fitness level for recognizing device 
classes and sequences within each class device.  
 
Figure 4 indicates that the 3-layer network mentioned before, 
when trained with at least 50 examples, was able to reach 100% 
(perfect) fitness level, i.e., the intelligent MIND document 
could properly recognize any of the five device classes during 
the encounter. Moreover, training the document to reach the 
perfect fitness level was not very demanding, as the network 
needed for that just a few seconds on a moderately equipped 
laptop. This observation is very important for any realistic 
implementation of the MIND document-agent system: training 
of documents may be performed directly on regular execution 
devices, mainly workstations or laptops, used by the 
collaborators during the implemented business process.   
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Figure 4: Training for device recognition 
 
In the second phase of the experiment, when the contract 
prediction capability was tested, only sequences of offers from 
the perfectly recognized devices were used. Figure 5 illustrates 
results of recognizing sequences leading to the contract based 
on the initial subsequence of offers returned by the laptop 
device.  
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Figure 5: Recognition of offer sequences from the laptop device 
 
In this particular experiment the bargaining set included 50 
offers, and sequences of offers from that bargaining set of 
various lengths were used to generate the training examples; 
sequence used for training included respectively 5, 15, 20 and 
25 offers out of the total 50. It may be seen that in order to train 
the network to properly recognize sequences leading to the 
contract, sequences including only a subset of offers from the 
bargaining set had to be used. While for the smallest fraction of 
offers used (only five out of 50) a  relatively large set of 200 
training sequences was needed – all other fractions required a 
significantly smaller set of about 20 training sequences. In the 
experiments with sequences of offers from the bargaining set of 



other device classes (not reported in the paper) we got similar 
results. They all indicate that the neural network may be 
effectively trained to recognize sequences.    
 
The ultimate objective of our experiments was to evaluate how 
much the simple bargaining game may be improved by utilizing 
properly trained neural networks to recognize classes of devices 
and sequences of their offers. Results for all five classes of 
devices playing with the intelligent dPL document (see Table 2) 
are presented in Figure 6. 
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Figure 6: Intelligent vs. simple bargaining 

 
We have first solved Eq. (1) by assuming both utility functions, 
𝑈𝑈1 and 𝑈𝑈2, to be known. This solution is called in the literature 
the fair result. Next we performed a significant number of 
simulated encounters between documents and devices, with 
their options trees generated at random, but in accordance to the 
policy rules of each respective device and document class. In 
one part of the experiment parties were negotiating contracts 
using simple (estimated) bargaining, and in another, intelligent 
bargaining with documents utilizing the appropriately trained 
networks. In each simulated encounter option trees of the 
negotiating parties were sorted in the opposite order to each 
other to ensure the maximum possible number of steps. It may 
be seen that for each class of devices, documents capable of 
predicting sequences of offers returned by devices were able to 
get close to the fair result in a significantly smaller number of 
steps. The number of steps observed for various classes of 
devices is related to the number of combinations of attribute 
value options: cellphones had a significantly smaller number of 
value labels in their policy rules, therefore Algorithm 3 
performed quite well compared to Algorithm 4. 
  

5.  RELATED WORK 
 

The player attempting to model characteristics of its opponent 
in order to generate offers leading to the agreement faster may 
be represented as the optimization problem. For example, in [9] 
the best offer in each round is searched in the set of possible 
offers using the particle swarm optimization (PSO) method. 
Negotiation may also be modeled as a multi-state control 
process, in which the intelligent agent has to determine a 
sequence of optimal controls, i.e., to predict future offers [2]. 
Agents may also learn in the initial series of rounds of the actual 
encounter to predict offers that that may faster lead to the 
contract [1], [8]. However, negotiation-as-a-service (NaaS) 
proposed in [1] may work only when the document agent has 
(or is allowed to) access the network from its current execution 
device. Compared to the above, our approach also relies on 
neural networks, as they have been demonstrated to require 
moderate computational and storage resources, but prefers 

training of document agents before rather than during the actual 
encounter with the device. 
     

6.  CONCLUSION 
 

This idea of a proactive document negotiating with its execution 
device is novel to the field of document engineering. We have 
shown that such a document can effectively interact with a non-
cooperative device to agree on the execution context that may 
satisfy both parties when using the economic agent model 
augmented with a relatively simple machine learning 
mechanism. Our experiments show that these mechanisms may 
be effectively implemented using even less powerful mobile 
devices. In our view there will be a growing demand for 
investigating mechanisms proposed in this paper, in particular 
to develop methods for recognizing device classes not yet 
known to agents – as the advances in the mobile device 
technology will push forward the evolution of new 
computational ‘life forms’ in the Web.  
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