

Document Agents with the Intelligent Negotiation Capability

Jerzy KACZOREK and Bogdan WISZNIEWSKI

 Department of Intelligent Interactive Systems,
Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology

80-233 Gdansk, Poland

ABSTRACT

The paper focus is on augmenting proactive document-agents
with built-in intelligence to enable them to recognize execution
contexts provided by devices visited during the business
process, and to reach collaboration agreement despite of their
conflicting requirements. We propose a solution based on
intelligent bargaining based on neural networks to improve
simple multi-issue negotiation between the document and the
device, practically with no excessive cost to the agent with
limited RAM and CPU resources.

Keywords: Proactive Document, eCollaboration, Mobile
Computing.

1. INTRODUCTION

Individuals, who collaborate in a network organization, interact
by exchanging electronic documents that constitute units of
information, and at the same time units of interaction. This
dichotomy has become apparent with the advent of active
documents, often implemented as software agents. In particular,
our mobile interactive document (MIND) [4] can migrate over
the network and carry both, the content to be worked on and
specification of its migration path with activities and
transitions. Each activity represents a piece of work to be
performed by the receiving user (knowledge worker) with the
incoming document content, whereas transition indicates where
the outgoing document, constituting a result of the activity,
should migrate next.

Successful completion of each activity depends on the
intentions of the document originator, operational
characteristics of the device, as well as preferences of the
knowledge worker responsible for the current processing step.
A proactive MIND document can handle that in several ways:
activity may be performed automatically by its embedded code
– if allowed by the worker operating his/her device, may be
performed manually by the worker using local services or tools
installed on that device, or the device may call some external
(third party) service requested by the document – if the Internet
connection is available at the time of executing the activity.
Owing to that, the agents – proactive MIND documents and
execution devices alike – may exhibit specific beliefs and
desires [3]; we represent them with bargaining sets and
policies.

Attributes of execution contexts
When a proactive document and its execution device have
different beliefs and desires with regard to what resources
should be provided to perform the actual activity some
consensus must be found. The conflict arises when the
document wants to get from the device as much computational
power and resources as possible, while the latter would like to
complete the activity at the lowest possible cost, e.g., with
regard to the battery power, network bandwidth consumption,
and with the minimum risk of compromising its security, among

others. In other words, the execution context must be found that
satisfies both parties: the document and the device. When doing
that the parties search the set of possible execution contexts for
the one that may be agreed; we call that set the bargaining set.
Elements of the bargaining set are m-vectors, called offers. Each
offer 𝑜𝑜 =< 𝑣𝑣1, … ,𝑣𝑣𝑚𝑚 >, consists of values 𝑣𝑣𝑖𝑖, i=1,…,m,
selected from the respective sets Ai, representing attributes of
the execution context. In our model we distinguish five
attributes: who shall be the actual performer of the activity (A1),
what is the current network availability (A2), its performance
characteristics (A3), the current execution device security (A4)
and its possible reliability levels (A5). They suffice to
characterize a fairly wide range of classes of execution devices
and proactive documents [5]. Moreover, policy rules define
partial ordering of offers and specify which combinations of
attribute values are allowed in the offers and which are not. We
have formally defined these rules for specific classes of devices
and documents.

There are five classes of devices in our model: workstations
(x1), laptops (x2), tablets (x3), smartphones (x4) and cellphones
(x5). Each device class has a related subset of values that each
respective attribute may assume. These subsets are denoted by
unique labels that may appear in the respective levels of the
option tree; combinations of these labels make the bargaining
sets specific to the particular class of devices. Policy rules
determine partial ordering of offers, and are of the form
𝑋𝑋𝑖𝑖 → {𝑌𝑌𝑖𝑖+1, … ,𝑍𝑍𝑖𝑖+1}, where 𝑋𝑋𝑖𝑖⊂ 𝐴𝐴𝑖𝑖, 𝑌𝑌𝑖𝑖+1, … ,𝑍𝑍𝑖𝑖+1⊂ 𝐴𝐴𝑖𝑖+1 are
subsets of the respective attribute value sets, and curly braces {}
denote ordering of the respective attribute value labels. For
example, Table 1 specifies the policy of laptop devices (x2),
implemented in our MIND system.

Table 1: Example of the laptop policy (x2)
Attribute set Rules

A1 Performer ε → {W[1-2],J[1-4],D[1-3]}
A2 Availability {W[1-2],J[1-4],D[1-3]}→{I[1-7],E[1-7]}

A3 Performance {I[1-7],E[1-7]} →
{N[1-4], R[2,4], A[1-4],M[1-4]}

A4 Security {N[1-4], R[2,4], A[1-4],M[1-4]} →
{C[1-4],T[1-4], K[1-4],P[1-4]}

A5 Reliability {C[1-4],T[1-4], K[1-4],P[1-4]} →
{H[1-4],F[1-4], B[1-4],L[1-4]}

Regular expressions in the table denote a range of labels, e.g.,
D[1-3] denotes D1,..,D3, or a list of labels, e.g., R[2,4] denotes
R2 and R4. Each single label represents a concrete subset of
attribute values. In particular, for the ‘performer’ attribute,
labels D[1-3] denote various subsets of values relevant to the
autonomous execution of the activity by the document, without
any help from the worker using the execution device, whereas
J[1-4] refer to various execution contexts requiring interaction
between the document and the worker. For the ‘availability’
attribute, labels I[1-4] and E[1-4] refer to various types of
network connections (from inside of the host organization or
external to it) that are available during execution. For the
‘performance’ attribute, label R2 denotes a concrete value

indicating that a wireless network and excessive RAM may be
provided, and so on. The rationale for partitioning the attribute
value sets for the respective classes of devices has been
explained in detail in [6], and is beyond the scope of this paper.

We have also defined four classes of documents, based on the
following two characteristics. One is that the document content
may be protected (P) or open (O) – depending on whether it
does or does not need any secure connection to perform the
activity, another is that it may impose a heavy (H) or light (L)
load on the device – depending on whether it requires CPU
power and the amount of RAM above some average level or
not. For example, Table 2 specifies the policy of a proactive
document which content is protected and light (dPL).

Table 2: Example policy of dPL proactive documents
Attribute set Rules

A1 Performer ε → { J[1-4],D[1-3]}
A2 Availability {J[1-4],D [1-3]} → {I1,E1}
A3 Performance {I1,E1} → {N[1-4],R[1-4],A[1-4],M[1-4]}

A4 Security {N[1-4],R[1-4],A[1-4],M[1-4]} →
{C[1-4],T[1-4], K[1-4]}

A5 Reliability {C[1-4],T[1-4], K[1-4]} → {H[3-4],B[3-4]}

The rest of the paper is structured as follows. Further in Section
1 the method of modeling preferences of negotiating parties is
outlined. Section 2 introduces rules for the simple bargaining
game and its basic implementation algorithms. In Section 3 the
method for the intelligent selection of offers based on neural
networks is proposed. Experiments evaluating the method are
described in Section 4, while Section 5 provides a short survey
of the related work in the area of intelligent negotiation. Section
6 concludes the paper.

Document-agent execution
The way the document activity is performed on the device
where the mobile document is currently located, depends on the
document functionality, operational characteristics of the device
currently in use, and preferences of the worker (person)
handling the device and expected to perform (or at least accept
the outcome of) the current processing step. Combinations of
these factors define specific execution contexts which may
vary, since the same person may use different devices when
performing activities of the same business process, e.g., using a
workstation when in office, a smartphone during travel between
office and home, and a laptop at home. User preferences for the
same device may depend on its current location, often
conflicting with document agents’ policies.

Multi-item bargaining
In a loosely-coupled distributed system, like the multi-agent
system described above, resolution of possible conflicts
between document-agents and execution devices should rather
not rely on any external Web service. This is because mobile
devices may often be out of a trusted network (or any network
at all) or the connection available to them may be too costly (if
only a cellular network is possible), not mentioning the security
and privacy problems, as activities of documents might be
traced from outside of the business process. We propose to
resolve conflicts between documents and devices by the means
of negotiation [6]. The document-agent and its execution device
exchange offers and counter-offers, and systematically search
the space of possible contracts. However, this setting is non-
cooperative: negotiating parties have mutually incomplete
information on their preferences, as they keep them in secret
and want to get individually as much wealth as possible. Such
an alternating-offer protocol is modeled by us as a bilateral

multi-stage simple bargaining game (SBG) [6]. Players
exchange offers from the bargaining set they share.

Each player uses an option tree to model its individual
preferences in the bargaining set, as shown in Figure 1.
Attributes correspond to levels of the tree, with possible values
of each attribute listed at its respective level. A path in the
option tree defines a concrete offer combining these values,
e.g., offers o3=<D3,I1,N4,T4,H3> and o4=<D3,E1,A4,C3,B4>.
The bargaining set in Figure 1 is 𝐶𝐶𝐵𝐵 = {𝑜𝑜1, 𝑜𝑜2, 𝑜𝑜3, 𝑜𝑜4, 𝑜𝑜5}. Each
negotiating party has its own option tree, specifying the
preferred order of all possible offers in CB. In the example tree,
offer o3 is the most preferred, whereas o4 is the least preferred
one. Neither player reveals the ordering of offers in its tree to its
opponent.

B4

C3

B3

K3

A4

H4

C4

E1

H3

T4

N4

I1

A1: D3

R2

K4

H3

A2:

A3:

A4:

A5:
o3 o2 o1 o5 o4

Ui(o3)=1.0 Ui(o2)=0.8 Ui(o1)=0.7 Ui(o5)=0.3 Ui(o4)=0.2

Figure 1: An example option tree and offers of player Pi

Each player Pi, i=1,2, determines the ordering of offers in its
tree with its private utility function, 𝑈𝑈𝑖𝑖: 𝐶𝐶𝐵𝐵 → (0,1]. For
example, in Figure 1 utility 𝑈𝑈𝑖𝑖(𝑜𝑜3) = 1.0, while 𝑈𝑈𝑖𝑖(𝑜𝑜4) = 0.2,

2. SIMPLE BARGAINING GAME

Players are rational, i.e. when making offers each one starts
from the most valued offer in its respective option tree and
concedes in successive rounds until offer 𝑜𝑜𝑐𝑐 ∈ 𝐶𝐶𝐵𝐵 is agreed,
such that:

 𝑜𝑜𝑐𝑐 = arg max
𝑜𝑜∈𝐶𝐶𝐵𝐵

𝑈𝑈1(𝑜𝑜)𝑈𝑈2(𝑜𝑜), (1)

maximizes utilities of both players [6].

Formally, the objective of negotiating parties P1 and P2 is to
find in the given bargaining set a solution to Eq. (1) under
assumption that neither party knows its opponent’s utility
function. In order to do that, the execution device (player P1)
and the document-agent (player P2) play the SBG game
according to the following rules:

1) The game is started by P1 (the execution device);
2) Both players, P1 and P2, keep in secret their private

information, including their respective utility functions U1
and U2, and discount factors δ1 and δ2, but share knowledge
on the bargaining set CB ;

3) Utility values of players’ offers are discounted at each
transition to the next stage;

4) Players exchange offers until the game is concluded, i.e.,
one of the players accepts an offer or quits the game;

5) The game may be concluded by any player P1 or P2, when:
a. it repeats its opponent’s offer received in any

preceding stage, what implies accepting the offer as
the agreed contract,

b. it repeats its own offer submitted in any preceding
stage, what implies quitting the game, without
agreeing any contract.

Implementation of the above rules is fairly simple: the game is
sequential and the device alternate with the document by calling
function submitOffer, as shown in the listing of Algorithm 1.
The incoming MIND document-agent brings to the execution
device its private implementation of the submitOffer function,
embedded in its code. Another private implementation of this
function is located on the device. Both implementations are
called by the email client handling the document and executing
function playSBG before allowing the document to perform its
principal activity. Function submitOffer selects elements from
the bargaining set 𝐶𝐶𝐵𝐵 = 𝐶𝐶1 ∩ 𝐶𝐶2, where C1 and C2 are sets of
offers defined by the respective option trees of P1 and P2.

Algorithm 1: playSBG
1: Data:

 CB: bargainig set;
 P1.CR: offers received by the device;
 P1.CS: offers submitted by the device;
 o1: current offer of the device;
 P2.CR: offers received by the document;
 P2.CS: offers submitted by the document;
 o2: current offer of the device;
 k: current move number;

2: Result: agreed contract and the final move number;
3: k ← 0;
4: o2 ← null;
5: while o1 ≠ o2 do
6: o1 ← submitOffer(CB,P1.CR,P1.CS,o2,k) ;
7: if o1= o2 then
8: return [o1,k];
9: k ← k+1;

10: o2 ← submitOffer(CB,P2.CR,P2.CS,o1,k) ;
11: if o1= o2 then
12: return [o2,k];
13: k ← k+1;

Since any offer in CB can be accepted by either player, the rule
5b listed above will never have to be applied and is skipped.

Simple selection of offers
When systematically searching the bargaining set CB for the
solution of Eq. (1), each player has to decide whether to accept
one of the offers already received from its opponent, kept in its
set CR, or to select the offer not yet received from its opponent
(nor submitted earlier to it, as it would imply quitting the
game), kept in the set 𝐶𝐶𝑁𝑁 = 𝐶𝐶𝐵𝐵 − (𝐶𝐶𝑅𝑅 ∪ 𝐶𝐶𝑆𝑆). The decision is
made in line 19 of Algorithm 2, implementing a simple
selection of offers.

Algorithm 2: submitOffer (simple)
1: Data:

 CB: bargainig set;
 CR: offers received by the player;
 CS: offers submitted by the player;
 CN: offers not submitted nor received yet;
 o: offer submitted by the player’s opponent;
 δ: discount factor of the player;

2: Result: if the opponent’s offer is accepted it is returned as
the agreed contract, otherwise a counter-offer not yet
submitted is returned;

3: if o = null then
4: {start from the best offer}
5: o ← max(CB);
6: return o;
7: else
8: if o ∈ CS then
9: {last offer accepted by the opponent}

10: return o;
11: CR ← CR ∪ {o};
12: o' ← max(CR);
13: CN ← CB − (CR ∪ CS);
14: if CN=∅ then
15: {accept the best received offer}
16: return o';
17: else
18: o'' ← max(CN);
19: if U(o') ≥ δ⋅U(o'') then
20: {the incoming offer is better than the

discounted future one}
21: return o';
22: else
23: CS ← CS ∪ {o''};
24: return o'';

Notice that the simple selection implemented by Algorithm 2
may often search the entire CB, to the last possible element,
before making a decision on what offer to accept. If the
bargaining set is large, and the players option trees are sorted in
the opposite order to each another, the game may have as many
as ⌈|𝐶𝐶𝐵𝐵|/2⌉ stages. The question is whether the number of
stages can be reduced.

Prospect estimation
Note that in Algorithm 2, further exploration of the CN subset of
CB, thus considering continuation of the game, may not be
worthwhile if the utility function of the player making that
decision strongly decreases in the CN part of its option tree. In
such a case it may be reasonable to accept the best offer from
the ones already submitted by the opponent and kept in CR. This
idea is implemented by Algorithm 3.

Algorithm 3: submitOffer (estimated)
1: Data:

 CB: bargaining set;
 CR: offers received by the player;
 CS: offers submitted by the player;
 CN: offers not submitted nor received yet;
 o: offer submitted by the opponent (initially empty);
 δ1: discount factor of the device player;
 δ2: discount factor of the document player;
 k: current step number;
 λ: cumulative discount factor;

2: Result: if the opponent’s offer is accepted it is returned as the
agreed contract, otherwise a counter-offer not yet submitted is
returned;

3: if o = null then
4: {start from the best offer}
5: o ← max(CB);
6: return o;
7: else
8: CN ← CB − (CR ∪ CS);
9: o' ← max(CN);

10: if o' = o then
11: { accept the opponent’s offer}
12: return o;
13: else
14: {consider utility of all remaining offers }
15: CN ← CN − {o, o'};
16: CR ← CR ∪ {o};
17: o'' ← max(CR);
18: Usum ← 0;
19: λ ← discount(|CN|,k+1, δ1,δ2);
20: foreach oc ∈ CN do
21: Usum ← Usum + δ1⋅(λ⋅U(oc) + (1 − λ)⋅U(o));
22: if Usum / |CN| > U(o'') then
23: {if there are still valuable offers submit the new

one}
24: return o';

25: else
26: {accept the best received offer};
27: return o'';

Function discount, called in line 19, evaluates the cumulative
discount if the player decides to submit offers from CN in future
rounds, used next to calculate the average payoff of all such
prospective offers. The loop in line 20, which calculates the
formula in line 21, is the iterative version of the recursive
formula implementing the regressive outguessing aimed at
evaluating all possible outcomes of SBG when continued from
the step following the one currently performed [7]. Algorithm 3
was used by us to simulate SBG when comparing it with the
intelligent bargaining utilizing knowledge on the opponent’s
preferences, learned during previous encounters (see Algorithm
4). However, the cost of reducing the number of stages in
Algorithm 3 is that the estimation of prospect offers by the
player requires knowing the discount factor of its opponent. It
may be either assumed to be the same, or the additional
procedure to guess it during negotiation should be applied. The
latter is beyond the scope of this paper, but is realistic to
implement [7].

3. INTELLIGENT BARGAINING GAME

We propose a further improvement of our SBG game [6] by
utilizing machine learning mechanism based on neural
networks; the latter have been demonstrated in the literature to
require quite moderate computational and storage resources [8].
In that research, however, it was assumed that no a-priori
knowledge on the opponent existed, thus only on-line training
during the actual encounter was considered. In consequence, the
learning capability of negotiation agents concentrated on
predicting better offers, i.e., offers that might faster lead to the
contract based on the offers submitted by the opponent during
the initial series of rounds of the actual encounter [8]. In
contrast to that, we advocate the approach based on policies,
which enable generation of training sets for the neural network
before the encounter takes place; these sets could be much
richer than those available to the negotiating document-agent
during its actual encounter with the device. In consequence, our
intelligent negotiation agent may be expected to perform far
better than the one that learns to negotiate after the negotiation
has started – especially when it lacks any significant
computational resources.

Recognition of execution devices
Execution devices are recognized based on their bargaining
sets, modeled as occurrence vectors – binary bit-words
indicating the presence or absence of each possible attribute
value in any offer recorded in the negotiation history during the
training phase. This idea is illustrated in Figure 2.

M1: conversion of offers into
occurence vectors

neural
network

bargainig
sets

occurence
vector

{x1,
…,
x5 }

training

M1: conversion of offers into
occurence vectors

neural
network

bargainig
set

occurence
vector xi

classification

Figure 2: Device class recognition

Negotiation histories for the training set are generated based on
the policies for each specific device class, and enable training

the agent before starting its mission. Module M1 builds a bit-
word of the form 𝛽𝛽 = ω1 …ω5, where each respective bit-field
ω𝑖𝑖 consists of flags ω𝑖𝑖[1] …ω𝑖𝑖[|𝐴𝐴𝑖𝑖|], indicating whether the
respective attribute value 𝑣𝑣𝑖𝑖

𝑗𝑗 occurred in offers submitted by the
device. The network is trained with thus obtained occurrence
vectors to recognize classes of devices, based on characteristic
combinations of attribute values in bargaining sets of each
possible class of devices.

Prediction of contracts
Once the execution device class is recognized the neural
network may be set up to recognize the sequence leading to the
contract. We base this analysis on recognizing binary relations
between each pair of offers in the sequence. Each device class
requires a separate neural network, of the same number of
layers and neurons but with different weights. This is the key
asset of our method, to which we will return in the next section.
Figure 3 illustrates a general scheme for training the network to
predict contracts based on input sequences.

M2: generate pairs of offers neural network
(xi)

bargaing
sets

pairs

training

M2: generate pairs of offers neural network
(xi)

pairs

classification

M3: convert relations
to sequence

M4: predict contract
based on sequence

relation vectors

relation
vectors

sequence contract

bargaing
sets

Figure 3: Contract prediction

Module M2 generates all possible pairs of offers used to train
the network to recognize their precedence relations. Offers in
each pair (𝑜𝑜′, 𝑜𝑜′′) have the respective labels of their attribute
values coded with the unique natural numbers, so each pair is
represented as the 10-element vector of natural numbers. Two
complete sets of such vectors are generated based on the set of
sequences recorded when playing SBG over the particular
bargaining set: one for vectors where 𝑜𝑜′ precedes 𝑜𝑜′′ (𝑜𝑜′ < 𝑜𝑜′′),
and another where 𝑜𝑜′ succeeds 𝑜𝑜′′ (𝑜𝑜′ > 𝑜𝑜′′). When trained with
pairs from the bargaining set and precedence relations from the
negotiation history, the network is able to guess precedence
relations based on the bargaining set under test. Module M3
uses the recognized relation vectors to reconstruct the predicted
sequence of offers. The sequence can be used next by the player
to choose offers in the more informed way than in the case of
simple bargaining.

Informed selection
Module M4 in Figure 3 implements the following algorithm:

Algorithm 4: submitOffer (informed)

1: Data:
 CB: bargaining set;
 CR: offers received by the player;
 CS: offers submitted by the player;
 CN: offers not submitted nor received yet;
 o: offer submitted by the opponent (initially empty);
 k: current step number;
 nnSeq: sequence predicted by the neural network;

2: Result: if the opponent’s offer is accepted it is returned as
the agreed contract, otherwise a counter-offer predicted by
the supporting neural network is returned.

3: if o = null then
4: {start from the best offer}
5: o ← max(CB);
6: return o;

7: else
8: CN ← CB − (CR ∪ CS);
9: CN ← CN − {o };

10: CR ← CR ∪ {o};
11: o'' ← max(CR);
12: Umax ← 0;
13: foreach oc ∈ CN do
14: {use the predicted sequence to find the offer leading

to the maximum payoff}
15: otmp ← simulateSBG(oc,k+1,nnResp);
16: if U(otmp) > Umax then
17: Umax ← U(otmp);
18: o' ← oc;
19: if Umax > U(o'') then
20: CN ← CN – { o'};
21: {submit the predicted counter-offer}
22: return o';
23: else
24: {accept the opponent’s offer}
25: return o'';

When comparing Algorithms 3 and 4, it may be seen that
instead of estimating the average payoff of all prospective
offers from the unexplored part CN of the bargaining set, the
prospective offer with the maximum payoff is searched (the
loop in line 13), based on the sequence of the opponent’s offers
predicted by the network.

4. SIMULATION EXPERIMENTS

In the experiments we assumed that when playing SBG, as
specified by Algorithm 1, the document-agent implemented its
submitOffer function using Algorithm 4, while the device
implemented Algorithm 3. In order to do that, the document-
agent needed one neural network to recognize device classes
and five neural networks (one for each device class) to
recognize sequences. In practice, all these six classification
tasks were accomplished effectively with just two networks,
one for recognizing classes of devices, and another for
recognizing sequences. The latter network required a
dynamically changed set of weights to adjust it to recognize
sequences of the specific device class, once it has been
recognized by the document. In consequence, only the
“knowledge” on how to make informed selection of offers had
to be brought by the document to the device, along with the
content to work on, whereas the network execution facility was
provided by the device, running the specialized email client
responsible for handling MIND documents [4]. The network
required to classify devices (see Figure 2) consisted of the input
layer of 20 neurons, one hidden layer of also 20 neurons, and
the output layer of nine neurons, with the total of 2269 weights
and biases to set it up. The network capable of classifying
sequences (see Figure 3) consisted of the input layer of 10
neurons and the output layer with one neuron, requiring the
total of 1766 weights and biases to set it up. Given the Java
single-precision 32-bit IEEE 754 floating point representation
the document had to carry 4⋅1766=7064 bytes per device, or for
all five device classes about 35KB of data. If the MIND
documents were equipped also with the “knowledge” required
to recognize device classes (instead of email clients handling
them), the total extra load was less than 45KB – a negligible
amount when compared to the typical size of attachments
allowed by the present-day email systems.

 In the experiments, we have concentrated on three
characteristics of the intelligent document agent, namely its
fitness level, measuring the ratio of devices correctly recognized
by it, payoff of the contract guessed by the trained network

compared to the one negotiated by the agent without any
machine learning, and the cost measured as the time of training
the network and the length of negotiation measured as the round
number where the contract was agreed. Networks of various
sizes have been tested to find the minimal number of layers and
neurons to get the 100% fitness level for recognizing device
classes and sequences within each class device.

Figure 4 indicates that the 3-layer network mentioned before,
when trained with at least 50 examples, was able to reach 100%
(perfect) fitness level, i.e., the intelligent MIND document
could properly recognize any of the five device classes during
the encounter. Moreover, training the document to reach the
perfect fitness level was not very demanding, as the network
needed for that just a few seconds on a moderately equipped
laptop. This observation is very important for any realistic
implementation of the MIND document-agent system: training
of documents may be performed directly on regular execution
devices, mainly workstations or laptops, used by the
collaborators during the implemented business process.

55%

74%

99% 100% 100% 100% 100% 100% 100%

0,02 0,06 0,06 0,07 0,12 0,16

1,23

3,36

1,56

0,00 s

0,50 s

1,00 s

1,50 s

2,00 s

2,50 s

3,00 s

3,50 s

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 20 40 50 100 200 500 1000 2000
number of bargaining sets

hits
time

Figure 4: Training for device recognition

In the second phase of the experiment, when the contract
prediction capability was tested, only sequences of offers from
the perfectly recognized devices were used. Figure 5 illustrates
results of recognizing sequences leading to the contract based
on the initial subsequence of offers returned by the laptop
device.

100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

99,03%

93,78%

99,20% 99,94%

74,28%

87,74%

91,33%
92,63%

96,04%
98,28%

70%

75%

80%

85%

90%

95%

100%

10 20 40 50 100 200

hi
ts

number of sequences

50/25
50/20
50/15
50/5

Figure 5: Recognition of offer sequences from the laptop device

In this particular experiment the bargaining set included 50
offers, and sequences of offers from that bargaining set of
various lengths were used to generate the training examples;
sequence used for training included respectively 5, 15, 20 and
25 offers out of the total 50. It may be seen that in order to train
the network to properly recognize sequences leading to the
contract, sequences including only a subset of offers from the
bargaining set had to be used. While for the smallest fraction of
offers used (only five out of 50) a relatively large set of 200
training sequences was needed – all other fractions required a
significantly smaller set of about 20 training sequences. In the
experiments with sequences of offers from the bargaining set of

other device classes (not reported in the paper) we got similar
results. They all indicate that the neural network may be
effectively trained to recognize sequences.

The ultimate objective of our experiments was to evaluate how
much the simple bargaining game may be improved by utilizing
properly trained neural networks to recognize classes of devices
and sequences of their offers. Results for all five classes of
devices playing with the intelligent dPL document (see Table 2)
are presented in Figure 6.

3
4

3 3
2

16
17

18

13

5

0

2

4

6

8

10

12

14

16

18

20

workstation laptop tablet smartphone cellphone

Nu
m

be
ro

f s
te

ps

intelligent bargaining simple bargaining

Figure 6: Intelligent vs. simple bargaining

We have first solved Eq. (1) by assuming both utility functions,
𝑈𝑈1 and 𝑈𝑈2, to be known. This solution is called in the literature
the fair result. Next we performed a significant number of
simulated encounters between documents and devices, with
their options trees generated at random, but in accordance to the
policy rules of each respective device and document class. In
one part of the experiment parties were negotiating contracts
using simple (estimated) bargaining, and in another, intelligent
bargaining with documents utilizing the appropriately trained
networks. In each simulated encounter option trees of the
negotiating parties were sorted in the opposite order to each
other to ensure the maximum possible number of steps. It may
be seen that for each class of devices, documents capable of
predicting sequences of offers returned by devices were able to
get close to the fair result in a significantly smaller number of
steps. The number of steps observed for various classes of
devices is related to the number of combinations of attribute
value options: cellphones had a significantly smaller number of
value labels in their policy rules, therefore Algorithm 3
performed quite well compared to Algorithm 4.

5. RELATED WORK

The player attempting to model characteristics of its opponent
in order to generate offers leading to the agreement faster may
be represented as the optimization problem. For example, in [9]
the best offer in each round is searched in the set of possible
offers using the particle swarm optimization (PSO) method.
Negotiation may also be modeled as a multi-state control
process, in which the intelligent agent has to determine a
sequence of optimal controls, i.e., to predict future offers [2].
Agents may also learn in the initial series of rounds of the actual
encounter to predict offers that that may faster lead to the
contract [1], [8]. However, negotiation-as-a-service (NaaS)
proposed in [1] may work only when the document agent has
(or is allowed to) access the network from its current execution
device. Compared to the above, our approach also relies on
neural networks, as they have been demonstrated to require
moderate computational and storage resources, but prefers

training of document agents before rather than during the actual
encounter with the device.

6. CONCLUSION

This idea of a proactive document negotiating with its execution
device is novel to the field of document engineering. We have
shown that such a document can effectively interact with a non-
cooperative device to agree on the execution context that may
satisfy both parties when using the economic agent model
augmented with a relatively simple machine learning
mechanism. Our experiments show that these mechanisms may
be effectively implemented using even less powerful mobile
devices. In our view there will be a growing demand for
investigating mechanisms proposed in this paper, in particular
to develop methods for recognizing device classes not yet
known to agents – as the advances in the mobile device
technology will push forward the evolution of new
computational ‘life forms’ in the Web.

Acknowledgment
This work was supported in part by the National Science
Center, Poland, under grant DEC1-2011/01/B/ST6/06500.

7. REFERENCES

[1] M. I. Bala, S. Vij and D. Mukhopadhyay, “Intelligent

Agent for Prediction in E- Negotiation: An Approach”, in
Proc. Int. Conf. on Cloud Ubiquitous Computing
Emerging Technologies CUBE’13, IEEE, pp. 183–187.

[2] J. Brzostowski and R. Kowalczyk, “Predicting Partner’s
Behaviour in Agent Negotiation”, in Proc. 5th Int. Joint
Conf. on Autonomous Agents and Multi-agent Systems
AAMAS’06, ACM, 2006, pp. 355–361

[3] M. Georgeff, B. Pell, M. Pollack, M. Tambe and M.
Wooldridge, “The Belief-Desire-Intention Model of
Agency”, in Proc. 5th Int. Workshop ATAL'98, LNCS,
Vol. 1555, J. Müller, A. Rao and M. Singh, Eds.,
Springer, pp. 1-10.

[4] M. Godlewska and B. Wiszniewski, “Smart Email:
Almost an Agent Platform”, Innovations and Advances
in Computing, Informatics, Systems Sciences,
Networking and Engineering, LNEE, Vol. 313, T. Sobh
and K. Elleithy, Eds., Springer, 2015, pp. 581–589.

[5] J. Kaczorek and B. Wiszniewski, “Augmenting Digital
Documents with Negotiation Capability”, in Proc. ACM
Symp. on Document Engineering DocEng’13, ACM,
2013, pp.95-98.

[6] J. Kaczorek and B. Wiszniewski, “Bilateral Multi-Issue
Negotiation Between Active Documents and Execution
Devices”, in Proc. 9th International Conference on
Digital Society ICDS’15, IARIA, 2015, in press.

[7] J. Kaczorek, “Automated Negotiations over Collaboration
Protocol Agreements”, Ph.D. Thesis, Gdansk University
of Technology, Gdansk, Poland, 2015.

[8] I.V. Papaioannou, I. Roussaki, and M.E. Anagnostou,
“Using Neural Networks to minimize the Duration of
Automated Negotiation Threads for Hybrid Opponents”,
Journal of Circuits, Systems, and Computers, Vol. 19,
No. 1, 2010, pp. 59–74.

[9] Z. Wang and L. Wang, “Adaptive Negotiation Agent for
Facilitating Bi-Directional Energy Trading Between
Smart Building and Utility Grid”, IEEE Trans. Smart
Grid, Vol. 4, No. 2, 2013, pp. 702– 710.

