

Extending the Consistency Property of Software Transactional Memory Systems

with business constraints in OCL and incremental checking

Alberto-Manuel FERNANDEZ-ALVAREZ,

Daniel FERNANDEZ-LANVIN and

Manuel QUINTELA-PUMARES

 Computing Department, University of Oviedo

Oviedo, Asturias, Spain

ABSTRACT

Software Transactional Memory (STM) systems offer AcId

(note the letter case) properties. Consistency is usually regarded

from the STM side but not from the business problem point of

view. We propose a way to extend current STM systems with a

consistency subsystem able to verify business constraints

expressed in OCL by the development team. The proposed

solution applies OCL incremental checking techniques and code

generation to couple seamlessly with the transaction lifecycle

with little runtime performance penalty.

Keywords: Constraints, Transactional Memory, Consistency

checking, Incremental checking.

1. INTRODUCTION

Software Transactional Memory (STM)[1] systems bring the

ACID properties to the mainstream programming: the well-

known Atomicity, Consistency, Isolation and Duration

properties. However, in STM, Consistency and Duration differ

a bit their interpretation in respect with the database field. In

STM, Duration is not understood as persistence, but as the

visible effects after the transaction commit. On the other hand,

Consistency is considered from the point of view of the

concurrency management system itself, as the STM being able

to serialize the inner operations of all concurrent transactions.

That interpretation of Consistency lacks the business point of

view.

For instance, constraints like “a motorbike has two wheels”

cannot be easily expressed and checked as an integrity

validation prior to the commit operation. However, this type of

constraints, along with the domain model specification, is a

very frequent analysis outcome. If developers were able to

express those constraints, identified by the analyst, in a high

level language, and got them checked automatically as the

Consistency property of ACID transactions, they would produce

higher quality software without increasing the effort or the

complexity of the developing task.

The most widely used language in Object Oriented development

to represent constraints is the Object Constraint Language

(OCL)[2]. This language is used by analysts and developers,

mostly by those that follow a MDE approach. The subsequent

implementation of those constraints usually involves some

difficulties that can complicate the work of the programmers:

(1) how to write the invariant check, (2) when to execute the

constraint verification, (3) over-what-objects should be

executed and (4) what-to-do in case of a constraint violation.

Although all these issues could be solved by manual

implementation, their complexity makes its development and

maintenance an error prone task that implies a potential source

of issues.

We think that all the aforementioned difficulties could be

avoided by means of appropriate automated consistency

checking mechanisms that complement STM systems.

2. DIFFICULTIES OF CONSTRAINT

IMPLEMENTATION

Constraints that affect to just one attribute, or to a set of

attributes on the same object, can be easily checked (the how

problem) as invariants, or post-conditions, in a Design by

Contract (DbC) way. However, those that affect more than one

object of the domain (domain constraints) are determined by the

state and relationships of every concerned object. As changes in

the state of any of the involved objects can be produced by

different method calls, it is difficult to know where to place the

constraint checking code. According to the DbC approach, these

invariants will only be checked if any public method of the

invariant’s declaring class object is executed, but modifications

to the other involved objects will not be detected (this is a

known limitation of DbC, referred as the framework problem

[3]). The developer may then try to scatter the constraint along

several methods, even in different classes. That will lead to

code scattering, code tangling and tight coupling [4].

The second issue, the when question, is also problematic. In

case of domain constraints, immediate checking after every

single method call could simply not be possible, as low-level

method calls may produce transient illegal states that,

eventually, will evolve to a final legal state. That means the

checking must be delayed until the higher-level method

finishes. However, it may be difficult to foresee at

programming time whether a high-level method is being called

by another higher-level call or not.

The third issue (over-what-objects) developers must solve is to

delimit the scope of the checking. A complete checking of

every constraint after any modification would involve

unfeasible performance rates. Ideally, the programmer must

keep track of those constraints that might be compromised, and

the affected objects, and then, at the end of the high-level

method, check as few constraints, over as few objects, as

possible.

Finally, developers must guarantee the consistence of the model

in case a domain constraint violation happens (what-to-do).

There are many works on this topic. Some applies backward

error recovery techniques (BER) that provide Atomicity, that is

the case of Reconstructors [5]. With that property in place,

programmers can assume that modifications are done in an all-

or-nothing way.

241

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

3. PROPOSED SOLUTION

Checking all pending constraints when the transaction is about

to commit solves the when difficulty (2) and enriches the

Consistency property of ACID transactions from the point of

view the business.

What-to-do (4) in case of failure is then solved due to the

Atomicity property of transactions.

The how (1) difficulty can be solved applying OCL analysis

techniques and code generation. Those techniques are able to

convert the original OCL constraints into new incremental

versions optimized for the modification events that might occur

at runtime to the object graph. These new optimized OCL

versions are then translated into source code ready to be

compiled with the rest of the application code.

Finally, the over-what-object (3) difficulty can be solved by

generating code to detect the modifying events that might

violate the constraints. These event detectors need the support

of a runtime environment that stacks triples of event-object-

constraint to check. Consequently, programmers’ effort would

be reduced and STM enriched with business Consistency.

4. CONSTRAINTS ANALYSIS PROCESS

The constraints analysis process is executed at compile time

(Fig. 1).

Fig. 1. Input and output of the analysis process.

The outcome of the analysis process is a relation of classes,

events and invariants whose organization is shown in Fig. 2. For

each object in the graph (an instance of a ModelClass) the

process determines which events might violate which invariants

that must then be checked under the context of (may be another,

due to a context redefinition) object over which the invariant is

defined.

Fig. 2. Structure of the information produced by the analysis process.

With that information available, is easy to automate the

generation of code for the event detection and the new

versioned constraints.

Fig. 3. The output of the analysis process is used to generate code for

event detectors and checking code.

The processing of the constraint work over the abstract syntax

tree (AST) and consists of several stages, as depicted in Fig. 4.

Fig. 4. Processing of constraints.

During the first stage OCL expressions are simplified by

translating them into a canonical form. During this step some

logical equivalences are applied. An extensive relation of these

can be found in [6]. The process uses here a rule engine that

recursively applies every matching rule over the AST until no

more rules can be applied.

The second stage computes all possible structural events that

can affect a constraint. To this end, we follow the process

explained in [7]. Our implementation can detect five different

types of events:

 Insert: the creation of a new entity (call to new

operator)

 Delete: the deletion of an entity. There are some extra

difficulties here as in Java we cannot delete an object.

More on this later.

 Link: indicates the linking of two objects over an

association.

 Unlink: signals the unlinking of two objects.

 UpdAtt: indicates a change in the value of an attribute

(update attribute).

The third stage computes for each constraint-event pair a new

alternative equivalent to the first but probably simpler and with

fewer entities involved. This new constraint is specialized for

that specific type of event.

After this transformation, the simplification rule engine is

executed again with the addition of some new rules [7]. After

this sequence of steps, we end up with some simpler constraints

regarding every event for each constraint over a class. These

new constraints will be simpler and intended to be checked only

if its specific firing events occur.

 class rm minimum

ModelClass

+ name: String

Ev ent

+ type: EventType

Inv ariant

+ name: String

+ body: AST0..*

verifies

+context 1 1..*

triggers

1..*

1

produces

0..*

242

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

5. IMPLEMENTATION ISSUES

This proposal can be applied over a wide variety of object-

oriented programming languages. The most problematic issues

are related to the OCL expressions processing, domain model

loading and modifying events detection at runtime.

Fig. 5. Parsing OCL, loading the model, generating code and the

support of a runtime.

For the first issues there are three alternatives: (i) to use an

available OCL parser, (ii) to write one in the target language or

(iii) to make a cross-processing (a constraints analyzer written

in any language other than the development one).

For the second there are also several options: structural

introspection (supported by most modern languages) of the

classes implementing the domain model (e.g., the Java

Reflection API), or the modelling of the domain model in any

format the constraint analyzer can process (as produced by

modeling tools, e.g., XMI).

After the analysis step, some code generation is required to

instrument the detection of events and to stack linking objects in

the context of the current transaction. That linking objects relate

the detector object (the one that suffers the modification event)

with the constraint that must be checked and the navigation path

to travel from the detector object to the constraint context

object. The supporting runtime must provide a way to store

those linking objects until the commit of the transaction,

providing some optimizations to avoid repeated linking objects.

It is also needed to translate into executable code the new

versions of the constraints.

The generation will be conditioned by the architecture of the

target application. It is quite likely that the execution platform

provides some aid that will simplify the task (frameworks,

interceptors, aspect compiler, etc.). Even if the environment is

simple (the bare language and its core libraries) it will probably

have tools to apply aspect oriented programming, or to allow

some type of bytecode manipulation. Otherwise, as a last resort,

we could preprocess the source code created by developers.

The last issue is the integration of the supporting runtime in the

transaction lifecycle, as all the checking must be done prior to

commit operation. The supporting runtime will offer a context

to stack the linking objects and finally execute the pending

checkings. That context follows a resource usage pattern (create

/open, use, close):

 Context ctx = Context.createContext();

 try {

 <business operations here>

 ctx.close();

 } catch (…) {

 ctx.dispose();

 }

Fortunately, the transactions have the same pattern. This feature

allows nesting naturally:

(create/open, use*, close)

Where use* could expand to:

(create, execute, verify, close)

What results in:

(create/open, (create, execute, verify, close), close)

Being the transaction the outer pair of parentheses and the

constraint checking context the inner one.

Therefore, the proposed idea seems to be easy to integrate with

not only STM but other systems with a resource like patterns

such as object-relational mappers [8] or Reconstructors [5]. The

only requirement for this is that the target system we want to

integrate it with must offer a registration point, or any other

type of interception mechanism.

We think all these discussed alternatives open a range of

possible languages, and target platforms broad enough to

consider the proposal of wide application.

6. RELATED WORK

Simon Peyton Jones et al. [9] propose an extension to the STM

library for Haskell [10] which allows the programmer to

express invariants in the same language. These invariants are

automatically verified before the commit, and, in case of

violation a rollback restores the initial state.

The mechanism of checking the consistency is highly integrated

with the control system of transactions. This STM is built

around the concept of TVar, i.e. a transactional variable. A

TVar is able to maintain the previous values for each concurrent

thread acting as a redo-log. When the programmer adds an

invariant to the functional code, the STM detects its

dependencies on TVars. In that way, this system maintains a list

of invariants to check if there are changes in the TVar. It is,

therefore, a mechanism for incremental verification that only

checks the necessary assertions according to the events

produced.

Another interesting aspect of this implementation is the ability

to add transitional (or dynamic) restrictions. As TVars store the

value in memory before the modification (necessary for the

rollback), it is possible to access the original value and the

current one, and express constraints comparing the two states.

João Cachopo in his thesis proposes a similar mechanism to

check constraints for his STM called JVSTM [4]. The paper

proposes and implements a STM in Java, for use in production,

based on VBoxes (versioned boxes)[11]. The idea is similar to

the one described by Peyton Jones et al.

The restrictions are implemented in Java and are part of the

business code. They are methods denoted by the

@ConsistencyPredicate annotation, without parameters and

return a boolean. The system, similarly to the Peyton Jones et

al. proposal, records the dependencies between the assertion

243

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

methods and the VBoxes by monitoring the accesses from the

assertion methods to the VBoxes when the object is first joined

to the transaction.

Both systems share advantages and disadvantages. Both of then

offer an efficient verification due to the recording of

dependencies between TVar/VBox and the methods that must

be checked. This is, in fact, a type of incremental checking as

the proposed here. Both, also, offer support for all types of

constraints. And in both cases the assertions are written with the

same programing language, which might alleviate the learning

curve for developers.

However, on the one hand, the two solutions are very dependent

on the systems they are embedded in, while we offer a general

solution that might be integrated with other deployments (e.g.,

ORM, plain Java, Reconstructors, etc.). On the other hand, the

way both detect the dependencies between TVar/VBox and the

assertion methods is by monitoring the accesses done from the

code while it is in execution. But these depend on the execution

flow inside the method; that is, if the method has conditionals,

switch statements or polymorphic invocations not all branches

will be covered so there are chances to overlook some

dependencies.

7. PROTOTYPE IMPLEMENTATION

In order to proof the feasibility of this proposal a prototype has

been implemented. We chose the Java platform as the target as

it is a mainstream language and offers a wide variety of tools

and frameworks that easy the task. Multiverse [12] is used as

the STM implementation. It is a STM implementation based on

the use of atomic references (similar to the TVar of Haskell or

the VBox of JVSTM). The transactional code must be executed

under a template method (atomic()) and written so that it

implements a Txn<Type>Callable interface:

public class Department {

 private TxnRef<String> name = newTxnRef<>();

 public void aBusinesMethod(…) {

 atomic(new TxnVoidCallable() {

 public void call(Txn trx) {

 <business code here>

 });

 }

 ...

}

As OCL parser we use the Dresden OCL ToolKit (DOT) [13]. It

provides a set of tools to parse and evaluate OCL constraints on

various models like UML, EMF and Java, and is also able to

generate Java equivalent code. We take advantage of the model

loading feature to build a representation of the domain model

from Java classes. The OCL parsing capabilities are also used to

build an AST representation of every OCL constraint.

After obtaining an AST for each constraint, the analyzer,

implementing the algorithms presented in the section 4,

produces the resulting information we feed into a code

generator that yields the instrumenting code for event detection

and the implementation of the new-versioned constraints. Both

the instrumenting code and the constraint checking code are

woven with developer’s code by using aspect orientation. In our

prototype the code generator produces AspectJ code [14].

Fig. 6. Structure of the prototype implementation.

The code produced for event detection has to deal with these

different situations: (i) detect modifications of attributes, (ii)

detect the linkage (also the opposite) of objects and (iii) detect

creation and deletion of objects.

The first (i) is solved by issuing an after advice1 on every

attribute of a domain model class. That advice is in charge of

creating the linking object and staking it onto the constraint

context.

The second (ii) is more convoluted. As UML associations are

implemented with object references, establishing an association

between two objects implies to modify one or two references (in

case of a bidirectional association). For the sides with maximum

multiplicity of one, the case is similar to the modification of an

attribute. But for a many side, usually implemented as an

attribute of a collection type, creating/deleting a link means to

insert or remove to/from that collection. For that case, our

prototype inserts a proxy to intercept these operations and then

generate and stack the linking object. The proxy is set with an

after advice that watches the first assignation of the collection

attribute.

The third situation (iii) has to deal with the creation and

deletion of objects. Just detecting the construction of an object

(with an after advice on the constructor execution) will not be

enough. Some objects could be created just as temporal values

(variables in methods) and others could be unreferenced objects

waiting for the garbage collector to be removed. Therefore,

several questions come to the fore here: Which objects are valid

objects? When does an object become invalid (i.e. it is no

longer used)? Where is the collection of valid objects?

In our understanding, the objects that must be considered valid

are those in the domain object graph, more precisely, those

objects reachable from the graph. In that way, we can detect the

addition of a new object when it is linked to another object

already present in the graph. Conversely, an object deletion will

be produced after the removal of all links that maintain the

object linked to the graph. In that way, we consider an object to

be in-the-graph when it is reachable though “any” link of “any”

association type its class can have. Using another aspect, we

crosscut the domain entity classes with two collections, one for

forward references, and another for the backward ones.

A more precise definition of these aspects can be found on a

previous paper of the authors [15].

1 AspectJ reserved words.

244

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

The supporting runtime must provide a context able to stack the

linking objects and then verify all the pending checking at the

close() operation.

Embedding the constraint context in the transaction context

The last issue is to link both contexts so that, when the

transaction is about to commit, all the pending checking will be

executed. In this prototype we use, again, aspects to intercept

the transaction. The atomic static method provided by

Multiverse is schematized as follows:

public void atomic(

 final TxnVoidCallable callable){

 Trx tx = txnFactory.newTransaction(…);

 boolean abort = true;

 try {

 callable.call(tx);

 tx.commit();

 } catch (Exception e) {

 ...

 abort = true;

 } finally {

 if (abort) tx.abort();

 }

 ...

}

The solution adopted is to intercept the execution of the

callable.call() method from the atomic() method and then

handle the constraint checking context properly. This can be

done with a simple aspect like the one shown below:

public privileged aspect InvariantInterceptor {

 pointcut transactionalCallables() :

 execution(

 * org.multiverse.api.callables.*.call(Txn)

);

 Object around(): transactionalCallables() {

 Object res = null;

 Context ctx = Context.createContext();

 try {

 res = proceed(); // <-- callable.call()

 ctx.close(); // <-- invariant checking

 } catch (Exception ex) {

 ctx.dispose();

 throw ex;

 }

 return res;

 }

}

8. EVALUATION

Although the basic idea of this proposal (to add business

consistency to an STM system) is validated with the

construction of a working prototype, we have designed two

experiments to measure its runtime performance costs. The first

one compares the benefit of incremental checking versus naïve

checking (all constraints are checked against all objects in the

domain graph). The second one compares the transaction times

with and without incremental constraint checking.

We designed a small application for project management. The

domain model (Fig. 7) consists of 5 entities with 7 bidirectional

associations among them.

Fig. 7. Example domain model for the experiment.

The small application solves 8 use cases to cover the life cycle

of a project. Along with use cases, 10 constraints are defined so

that all types of constraints are covered. The use cases were

designed in a way they produced events to check all the

constraints. After the analysis done by the tool, 32 events were

computed, some of them affecting more than one constraint,

and 5 new event-specialized versions of constraints were

generated.

For the first experiment, all use cases are run in sequence (let’s

call it a test run) and the total checking time is measured. Every

use case in the sequence is run over the same preexisting graph

of objects, recreated before each use case execution, and

modifies the same number of objects. What is changed from

one test run to another is the size of the initial graph. This is

varied from 300 up to 20.000 objects.

The experiment was conducted with a JVM set to use 5 GB of

heap size (to reduce the noise of garbage collection) and

jittering enabled. Each test run was conducted 5000 times to

heat the JVM and then the 90 best times of the next 100

execution times were taken.

Fig. 8: Complete checking vs incremental checking times.

The results are shown in the Fig. 8. We can observe, as

expected, the incremental execution times remains constant and

independent of the graph size, while the complete checking time

increases with the size of the object graph. At the minimum

graph size both times are equal, as 300 is the number of objects

 class Domain Model workload

Department

+ name: String

Employee

+ id: int

+ name: String

+ surname: String

+ job: Job

+ birthDate: Date

+ hireDate: Date

+ salary: double

+ age() : int

Task

+ name: String

+ status: TaskStatus

+ endDate: Date

Project

+ name: String

+ budget: Money

+ isDepartmentWide: boolean

Contribution

+ date: Date

+ time: int

«enumeratio...

TaskStatus

«enum»

 CREATED

 ASSIGNED

 CLOSED

 FINISHED 1

contributes to

0..*

0..*

contributes by

1

+parent 0..1

decomposed

+subtask 0..*

1

generates

1..*

+assignedEmployees 0..*

assigns+projects

0..*

+parent

0..1

+subDepartments

0..*

+managed

0..1

managed by +manager

1

+department 1

develops

+projects 0..*

+employees

0..*

works for+department

1

245

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

the incremental checking has to visit with our experiment

design.

The second experiment tries to measure the extra time taken for

consistency checking in the total transaction time. For this case,

we set a fixed object graph size of 4000 objects (the previous

experiment showed the checking time is independent from the

object graph size) and measure the business execution and

checking times for each use case. The result is shown in the Fig.

9.

Fig. 9. Execution time vs checking time for each use case.

The graph shows different increments, ranging from 20% to

80%. That oscillation indicates that there is no structural

deficiency on the checking system, as in that case all the ratios

will be high. This difference comes from the fact that business

and the checking operations can have different complexities,

being independent from one another. A small modification in

the object graph might raise one or more complex checking,

while a complex business operation might affect just one

simple-to-check constraint.

9. CONCLUSIONS

The proposed solution takes the best of STM and OCL worlds

and benefits both. On the one hand, it solves the developers’

difficulties to implement constraint checking mechanisms. The

use of an STM easies the when and what-to-do difficulties of

constraint implementation, while incremental OCL checking

techniques and code generation solves the how and over-what-

objects difficulties. On the other hand, it allows to enrich the

Consistency property of current STM systems in a way

independent of the concrete STM implementation.

As shown with the experiments that integration seems to be

feasible and performs well, not introducing structural overloads

in total transaction time.

10. ACKNOWLEDGEMENTS

This work has been funded by the European Union, through the

European Regional Development Funds (ERDF); and the

Principality of Asturias, through its Science, Technology and

Innovation Plan (grant GRUPIN14-100).

11. REFERENCES

[1] T. Harris, J. Larus, and R. Rajwar, “Transactional

Memory, 2nd edition,” Synthesis Lectures on

Computer Architecture, vol. 5. pp. 1–263, 2010.

[2] Omg, “OMG Object Constraint Language (OCL)

v2.3.1,” vol. 3, no. January, p. 246, 2012.

[3] B. Meyer, “Framing The Frame,” NATO Sci. Peace

Secur., no. Series D: Information and Communication

Security, pp. 174–185, 2015.

[4] J. M. P. Cachopo, “Development of Rich Domain

Models with Atomic Actions,” UNIVERSIDADE

TÉCNICA DE LISBOA, 2007.

[5] D. Fernández Lanvin, R. Izquierdo Castanedo, A. A.

Juan Fuente, and A. M. Fernández Álvarez,

“Extending object-oriented languages with backward

error recovery integrated support,” Comput. Lang. Syst.

Struct., vol. 36, no. 2, pp. 123–141, Jul. 2010.

[6] J. Cabot and E. Teniente, “Transformation techniques

for OCL constraints,” Sci. Comput. Program., vol. 68,

no. 3, pp. 179–195, Oct. 2007.

[7] J. Cabot and E. Teniente, “Incremental integrity

checking of UML/OCL conceptual schemas,” 2009.

[8] C. Bauer, G. King, and G. Gregory, Java Persistence

with Hibernate. Manning Publications Co., 2014.

[9] S. P. Jones, “Transactional memory with data

invariants,” in First ACM SIGPLAN Workshop on

Languages Compilers and Hardware Support for

Transactional Computing TRANSACT’06 Ottowa,

2006.

[10] G. Korland, N. Shavit, and P. Felber, “Noninvasive

concurrency with Java STM,” Work. Program. Issues

Multi-Core Comput., pp. 7–20, 2010.

[11] J. Cachopo and A. Rito-Silva, “Versioned boxes as the

basis for memory transactions,” Sci. Comput.

Program., vol. 63, pp. 172–185, 2006.

[12] “Multiverse : Software Transactional Memory for

Java.” [Online]. Available:

http://multiverse.codehaus.org/overview.html.

[13] Claas Wilke, Dr.-Ing. Birgit Demuth, and Prof. Dr. rer.

nat. habil. Uwe Aÿmann, “Java Code Generation for

Dresden OCL2 for Eclipse.” Feb-2009.

[14] H. Rebêlo, G. T. Leavens, M. Bagherzadeh, H. Rajan,

R. Lima, D. M. Zimmerman, M. Cornélio, and T.

Thüm, “AspectJML: Modular Specification and

Runtime Checking for Crosscutting Contracts,” in

Proceedings of the 13th International Conference on

Modularity, 2014, pp. 157–168.

[15] A.-M. Fernández-Álvarez, D. Fernández-Lanvin, and

M. Quintela-Pumares, “Invariant Implementation for

Domain Models Applying Incremental OCL

Techniques,” in Software Technologies: 10th

International Joint Conference, ICSOFT 2015,

Colmar, France, July 20-22, 2015, Revised Selected

Papers, P. Lorenz, J. Cardoso, A. L. Maciaszek, and

M. van Sinderen, Eds. Cham: Springer International

Publishing, 2016, pp. 137–154.

246

Proceedings of The 8th International Multi-Conference on Complexity, Informatics and Cybernetics (IMCIC 2017)

	ZA885WP

