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ABSTRACT 

 

Software Transactional Memory (STM) systems offer AcId 

(note the letter case) properties. Consistency is usually regarded 

from the STM side but not from the business problem point of 

view. We propose a way to extend current STM systems with a 

consistency subsystem able to verify business constraints 

expressed in OCL by the development team. The proposed 

solution applies OCL incremental checking techniques and code 

generation to couple seamlessly with the transaction lifecycle 

with little runtime performance penalty. 

Keywords: Constraints, Transactional Memory, Consistency 

checking, Incremental checking. 

 

1. INTRODUCTION 

Software Transactional Memory (STM)[1] systems bring the 

ACID properties to the mainstream programming: the well-

known Atomicity, Consistency, Isolation and Duration 

properties. However, in STM, Consistency and Duration differ 

a bit their interpretation in respect with the database field. In 

STM, Duration is not understood as persistence, but as the 

visible effects after the transaction commit. On the other hand, 

Consistency is considered from the point of view of the 

concurrency management system itself, as the STM being able 

to serialize the inner operations of all concurrent transactions. 

That interpretation of Consistency lacks the business point of 

view.  

For instance, constraints like “a motorbike has two wheels” 

cannot be easily expressed and checked as an integrity 

validation prior to the commit operation. However, this type of 

constraints, along with the domain model specification, is a 

very frequent analysis outcome. If developers were able to 

express those constraints, identified by the analyst, in a high 

level language, and got them checked automatically as the 

Consistency property of ACID transactions, they would produce 

higher quality software without increasing the effort or the 

complexity of the developing task. 

The most widely used language in Object Oriented development 

to represent constraints is the Object Constraint Language 

(OCL)[2]. This language is used by analysts and developers, 

mostly by those that follow a MDE approach. The subsequent 

implementation of those constraints usually involves some 

difficulties that can complicate the work of the programmers: 

(1) how to write the invariant check, (2) when to execute the 

constraint verification, (3) over-what-objects should be 

executed and (4) what-to-do in case of a constraint violation. 

Although all these issues could be solved by manual 

implementation, their complexity makes its development and 

maintenance an error prone task that implies a potential source 

of issues. 

We think that all the aforementioned difficulties could be 

avoided by means of appropriate automated consistency 

checking mechanisms that complement STM systems. 

2. DIFFICULTIES OF CONSTRAINT 

IMPLEMENTATION 

Constraints that affect to just one attribute, or to a set of 

attributes on the same object, can be easily checked (the how 

problem) as invariants, or post-conditions, in a Design by 

Contract (DbC) way. However, those that affect more than one 

object of the domain (domain constraints) are determined by the 

state and relationships of every concerned object. As changes in 

the state of any of the involved objects can be produced by 

different method calls, it is difficult to know where to place the 

constraint checking code. According to the DbC approach, these 

invariants will only be checked if any public method of the 

invariant’s declaring class object is executed, but modifications 

to the other involved objects will not be detected (this is a 

known limitation of DbC, referred as the framework problem 

[3]). The developer may then try to scatter the constraint along 

several methods, even in different classes. That will lead to 

code scattering, code tangling and tight coupling [4].  

The second issue, the when question, is also problematic. In 

case of domain constraints, immediate checking after every 

single method call could simply not be possible, as low-level 

method calls may produce transient illegal states that, 

eventually, will evolve to a final legal state. That means the 

checking must be delayed until the higher-level method 

finishes. However, it may be difficult to foresee at 

programming time whether a high-level method is being called 

by another higher-level call or not. 

The third issue (over-what-objects) developers must solve is to 

delimit the scope of the checking. A complete checking of 

every constraint after any modification would involve 

unfeasible performance rates. Ideally, the programmer must 

keep track of those constraints that might be compromised, and 

the affected objects, and then, at the end of the high-level 

method, check as few constraints, over as few objects, as 

possible. 

Finally, developers must guarantee the consistence of the model 

in case a domain constraint violation happens (what-to-do). 

There are many works on this topic. Some applies backward 

error recovery techniques (BER) that provide Atomicity, that is 

the case of Reconstructors [5]. With that property in place, 

programmers can assume that modifications are done in an all-

or-nothing way.  
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3. PROPOSED SOLUTION 

Checking all pending constraints when the transaction is about 

to commit solves the when difficulty (2) and enriches the 

Consistency property of ACID transactions from the point of 

view the business.  

What-to-do (4) in case of failure is then solved due to the 

Atomicity property of transactions.  

The how (1) difficulty can be solved applying OCL analysis 

techniques and code generation. Those techniques are able to 

convert the original OCL constraints into new incremental 

versions optimized for the modification events that might occur 

at runtime to the object graph. These new optimized OCL 

versions are then translated into source code ready to be 

compiled with the rest of the application code.  

Finally, the over-what-object (3) difficulty can be solved by 

generating code to detect the modifying events that might 

violate the constraints. These event detectors need the support 

of a runtime environment that stacks triples of event-object-

constraint to check. Consequently, programmers’ effort would 

be reduced and STM enriched with business Consistency. 

4. CONSTRAINTS ANALYSIS PROCESS 

The constraints analysis process is executed at compile time 

(Fig. 1).  

 

 

Fig. 1. Input and output of the analysis process. 

The outcome of the analysis process is a relation of classes, 

events and invariants whose organization is shown in Fig. 2. For 

each object in the graph (an instance of a ModelClass) the 

process determines which events might violate which invariants 

that must then be checked under the context of (may be another, 

due to a context redefinition) object over which the invariant is 

defined. 

 

Fig. 2. Structure of the information produced by the analysis process. 

With that information available, is easy to automate the 

generation of code for the event detection and the new 

versioned constraints. 

 

Fig. 3. The output of the analysis process is used to generate code for 

event detectors and checking code. 

The processing of the constraint work over the abstract syntax 

tree (AST) and consists of several stages, as depicted in Fig. 4. 

 

Fig. 4. Processing of constraints. 

During the first stage OCL expressions are simplified by 

translating them into a canonical form. During this step some 

logical equivalences are applied. An extensive relation of these 

can be found in [6]. The process uses here a rule engine that 

recursively applies every matching rule over the AST until no 

more rules can be applied. 

The second stage computes all possible structural events that 

can affect a constraint. To this end, we follow the process 

explained in [7]. Our implementation can detect five different 

types of events: 

 Insert: the creation of a new entity (call to new 

operator) 

 Delete: the deletion of an entity. There are some extra 

difficulties here as in Java we cannot delete an object. 

More on this later. 

 Link: indicates the linking of two objects over an 

association. 

 Unlink: signals the unlinking of two objects. 

 UpdAtt: indicates a change in the value of an attribute 

(update attribute). 

The third stage computes for each constraint-event pair a new 

alternative equivalent to the first but probably simpler and with 

fewer entities involved.  This new constraint is specialized for 

that specific type of event.  

After this transformation, the simplification rule engine is 

executed again with the addition of some new rules [7]. After 

this sequence of steps, we end up with some simpler constraints 

regarding every event for each constraint over a class. These 

new constraints will be simpler and intended to be checked only 

if its specific firing events occur. 

 class rm minimum

ModelClass

+ name:  String

Ev ent

+ type:  EventType

Inv ariant

+ name:  String

+ body:  AST0..*

verifies

+context 1 1..*

triggers

1..*

1

produces

0..*
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5. IMPLEMENTATION ISSUES 

This proposal can be applied over a wide variety of object-

oriented programming languages. The most problematic issues 

are related to the OCL expressions processing, domain model 

loading and modifying events detection at runtime. 

 

Fig. 5. Parsing OCL, loading the model, generating code and the 

support of a runtime. 

For the first issues there are three alternatives: (i) to use an 

available OCL parser, (ii) to write one in the target language or 

(iii) to make a cross-processing (a constraints analyzer written 

in any language other than the development one). 

For the second there are also several options: structural 

introspection (supported by most modern languages) of the 

classes implementing the domain model (e.g., the Java 

Reflection API), or the modelling of the domain model in any 

format the constraint analyzer can process (as produced by 

modeling tools, e.g., XMI). 

After the analysis step, some code generation is required to 

instrument the detection of events and to stack linking objects in 

the context of the current transaction. That linking objects relate 

the detector object (the one that suffers the modification event) 

with the constraint that must be checked and the navigation path 

to travel from the detector object to the constraint context 

object. The supporting runtime must provide a way to store 

those linking objects until the commit of the transaction, 

providing some optimizations to avoid repeated linking objects. 

It is also needed to translate into executable code the new 

versions of the constraints. 

The generation will be conditioned by the architecture of the 

target application. It is quite likely that the execution platform 

provides some aid that will simplify the task (frameworks, 

interceptors, aspect compiler, etc.). Even if the environment is 

simple (the bare language and its core libraries) it will probably 

have tools to apply aspect oriented programming, or to allow 

some type of bytecode manipulation. Otherwise, as a last resort, 

we could preprocess the source code created by developers. 

The last issue is the integration of the supporting runtime in the 

transaction lifecycle, as all the checking must be done prior to 

commit operation. The supporting runtime will offer a context 

to stack the linking objects and finally execute the pending 

checkings. That context follows a resource usage pattern (create 

/open, use, close): 

   Context ctx = Context.createContext(); 

   try { 

      <business operations here> 

      ctx.close(); 

   } catch (…) { 

      ctx.dispose(); 

   } 

Fortunately, the transactions have the same pattern. This feature 

allows nesting naturally: 

(create/open, use*, close) 

Where use* could expand to: 

(create, execute, verify, close) 

What results in: 

(create/open, (create, execute, verify, close), close) 

Being the transaction the outer pair of parentheses and the 

constraint checking context the inner one. 

Therefore, the proposed idea seems to be easy to integrate with 

not only STM but other systems with a resource like patterns 

such as object-relational mappers [8] or Reconstructors [5]. The 

only requirement for this is that the target system we want to 

integrate it with must offer a registration point, or any other 

type of interception mechanism. 

We think all these discussed alternatives open a range of 

possible languages, and target platforms broad enough to 

consider the proposal of wide application. 

6. RELATED WORK 

Simon Peyton Jones et al. [9] propose an extension to the STM 

library for Haskell [10] which allows the programmer to 

express invariants in the same language. These invariants are 

automatically verified before the commit, and, in case of 

violation a rollback restores the initial state. 

The mechanism of checking the consistency is highly integrated 

with the control system of transactions. This STM is built 

around the concept of TVar, i.e. a transactional variable. A 

TVar is able to maintain the previous values for each concurrent 

thread acting as a redo-log. When the programmer adds an 

invariant to the functional code, the STM detects its  

dependencies on TVars. In that way, this system maintains a list 

of invariants to check if there are changes in the TVar. It is, 

therefore, a mechanism for incremental verification that only 

checks the necessary assertions according to the events 

produced. 

Another interesting aspect of this implementation is the ability 

to add transitional (or dynamic) restrictions. As TVars store the 

value in memory before the modification (necessary for the 

rollback), it is possible to access the original value and the 

current one, and express constraints comparing the two states. 

João Cachopo in his thesis proposes a similar mechanism to 

check constraints for his STM called JVSTM [4]. The paper 

proposes and implements a STM in Java, for use in production, 

based on VBoxes (versioned boxes)[11]. The idea is similar to 

the one described by Peyton Jones et al. 

The restrictions are implemented in Java and are part of the 

business code. They are methods denoted by the 

@ConsistencyPredicate annotation, without parameters and 

return a boolean. The system, similarly to the Peyton Jones et 

al. proposal, records the dependencies between the assertion 
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methods and the VBoxes by monitoring the accesses from the 

assertion methods to the VBoxes when the object is first joined 

to the transaction. 

Both systems share advantages and disadvantages. Both of then 

offer an efficient verification due to the recording of 

dependencies between TVar/VBox and the methods that must 

be checked. This is, in fact, a type of incremental checking as 

the proposed here. Both, also, offer support for all types of 

constraints. And in both cases the assertions are written with the 

same programing language, which might alleviate the learning 

curve for developers.  

However, on the one hand, the two solutions are very dependent 

on the systems they are embedded in, while we offer a general 

solution that might be integrated with other deployments (e.g., 

ORM, plain Java, Reconstructors, etc.). On the other hand, the 

way both detect the dependencies between TVar/VBox and the 

assertion methods is by monitoring the accesses done from the 

code while it is in execution. But these depend on the execution 

flow inside the method; that is, if the method has conditionals, 

switch statements or polymorphic invocations not all branches 

will be covered so there are chances to overlook some 

dependencies. 

7. PROTOTYPE IMPLEMENTATION 

In order to proof the feasibility of this proposal a prototype has 

been implemented. We chose the Java platform as the target as 

it is a mainstream language and offers a wide variety of tools 

and frameworks that easy the task. Multiverse [12] is used as 

the STM implementation. It is a STM implementation based on 

the use of atomic references (similar to the TVar of Haskell or 

the VBox of JVSTM). The transactional code must be executed 

under a template method (atomic()) and written so that it 

implements a Txn<Type>Callable interface: 

public class Department { 

   private TxnRef<String> name = newTxnRef<>(); 

    

   public void aBusinesMethod( … ) { 

      atomic( new TxnVoidCallable() { 

         public void call(Txn trx) { 

           <business code here> 

      }); 

   } 

   ... 

} 

As OCL parser we use the Dresden OCL ToolKit (DOT) [13]. It 

provides a set of tools to parse and evaluate OCL constraints on 

various models like UML, EMF and Java, and is also able to 

generate Java equivalent code. We take advantage of the model 

loading feature to build a representation of the domain model 

from Java classes. The OCL parsing capabilities are also used to 

build an AST representation of every OCL constraint. 

After obtaining an AST for each constraint, the analyzer, 

implementing the algorithms presented in the section 4, 

produces the resulting information we feed into a code 

generator that yields the instrumenting code for event detection 

and the implementation of the new-versioned constraints. Both 

the instrumenting code and the constraint checking code are 

woven with developer’s code by using aspect orientation. In our 

prototype the code generator produces AspectJ code [14].  

 

Fig. 6. Structure of the prototype implementation. 

The code produced for event detection has to deal with these 

different situations: (i) detect modifications of attributes, (ii) 

detect the linkage (also the opposite) of objects and (iii) detect 

creation and deletion of objects. 

The first (i) is solved by issuing an after advice1 on every 

attribute of a domain model class. That advice is in charge of 

creating the linking object and staking it onto the constraint 

context. 

The second (ii) is more convoluted. As UML associations are 

implemented with object references, establishing an association 

between two objects implies to modify one or two references (in 

case of a bidirectional association). For the sides with maximum 

multiplicity of one, the case is similar to the modification of an 

attribute. But for a many side, usually implemented as an 

attribute of a collection type, creating/deleting a link means to 

insert or remove to/from that collection. For that case, our 

prototype inserts a proxy to intercept these operations and then 

generate and stack the linking object. The proxy is set with an 

after advice that watches the first assignation of the collection 

attribute. 

The third situation (iii) has to deal with the creation and 

deletion of objects. Just detecting the construction of an object 

(with an after advice on the constructor execution) will not be 

enough. Some objects could be created just as temporal values 

(variables in methods) and others could be unreferenced objects 

waiting for the garbage collector to be removed. Therefore, 

several questions come to the fore here: Which objects are valid 

objects? When does an object become invalid (i.e. it is no 

longer used)? Where is the collection of valid objects? 

In our understanding, the objects that must be considered valid 

are those in the domain object graph, more precisely, those 

objects reachable from the graph. In that way, we can detect the 

addition of a new object when it is linked to another object 

already present in the graph. Conversely, an object deletion will 

be produced after the removal of all links that maintain the 

object linked to the graph. In that way, we consider an object to 

be in-the-graph when it is reachable though “any” link of “any” 

association type its class can have. Using another aspect, we 

crosscut the domain entity classes with two collections, one for 

forward references, and another for the backward ones. 

A more precise definition of these aspects can be found on a 

previous paper of the authors [15]. 

                                                 
1 AspectJ reserved words. 
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The supporting runtime must provide a context able to stack the 

linking objects and then verify all the pending checking at the 

close() operation. 

Embedding the constraint context in the transaction context 

The last issue is to link both contexts so that, when the 

transaction is about to commit, all the pending checking will be 

executed. In this prototype we use, again, aspects to intercept 

the transaction. The atomic static method provided by 

Multiverse is schematized as follows: 

public void atomic( 

     final TxnVoidCallable callable){ 

 

   Trx tx = txnFactory.newTransaction(…); 

   boolean abort = true; 

   try { 

      callable.call(tx); 

      tx.commit(); 

   } catch (Exception e) { 

      ... 

      abort = true; 

   } finally { 

       if (abort) tx.abort();  

   } 

   ... 

} 

The solution adopted is to intercept the execution of the 

callable.call() method from the atomic() method and then 

handle the constraint checking context properly. This can be 

done with a simple aspect like the one shown below: 

public privileged aspect InvariantInterceptor { 

   pointcut transactionalCallables() : 

     execution( 

      * org.multiverse.api.callables.*.call(Txn) 

     ); 

 

   Object around(): transactionalCallables() { 

      Object res = null; 

      Context ctx = Context.createContext(); 

      try { 

         res = proceed(); // <-- callable.call()   

         ctx.close();  // <-- invariant checking 

      } catch (Exception ex) { 

         ctx.dispose(); 

         throw ex; 

      } 

      return res; 

   } 

} 

8. EVALUATION 

Although the basic idea of this proposal (to add business 

consistency to an STM system) is validated with the 

construction of a working prototype, we have designed two 

experiments to measure its runtime performance costs. The first 

one compares the benefit of incremental checking versus naïve 

checking (all constraints are checked against all objects in the 

domain graph). The second one compares the transaction times 

with and without incremental constraint checking. 

We designed a small application for project management. The 

domain model (Fig. 7) consists of 5 entities with 7 bidirectional 

associations among them.  

 

Fig. 7. Example domain model for the experiment. 

The small application solves 8 use cases to cover the life cycle 

of a project. Along with use cases, 10 constraints are defined so 

that all types of constraints are covered. The use cases were 

designed in a way they produced events to check all the 

constraints. After the analysis done by the tool, 32 events were 

computed, some of them affecting more than one constraint, 

and 5 new event-specialized versions of constraints were 

generated. 

For the first experiment, all use cases are run in sequence (let’s 

call it a test run) and the total checking time is measured. Every 

use case in the sequence is run over the same preexisting graph 

of objects, recreated before each use case execution, and 

modifies the same number of objects. What is changed from 

one test run to another is the size of the initial graph. This is 

varied from 300 up to 20.000 objects.  

The experiment was conducted with a JVM set to use 5 GB of 

heap size (to reduce the noise of garbage collection) and 

jittering enabled. Each test run was conducted 5000 times to 

heat the JVM and then the 90 best times of the next 100 

execution times were taken. 

 

Fig. 8: Complete checking vs incremental checking times. 

The results are shown in the Fig. 8. We can observe, as 

expected, the incremental execution times remains constant and 

independent of the graph size, while the complete checking time 

increases with the size of the object graph. At the minimum 

graph size both times are equal, as 300 is the number of objects 

 class Domain Model workload

Department

+ name:  String

Employee

+ id:  int

+ name:  String

+ surname:  String

+ job:  Job

+ birthDate:  Date

+ hireDate:  Date

+ salary:  double

+ age() : int

Task

+ name:  String

+ status:  TaskStatus

+ endDate:  Date

Project

+ name:  String

+ budget:  Money

+ isDepartmentWide:  boolean

Contribution

+ date:  Date

+ time:  int

«enumeratio...

TaskStatus

«enum»

 CREATED

 ASSIGNED

 CLOSED

 FINISHED 1

contributes to

0..*

0..*

contributes by

1

+parent 0..1

decomposed

+subtask 0..*

1

generates

1..*

+assignedEmployees 0..*

assigns+projects

0..*

+parent

0..1

+subDepartments

0..*

+managed

0..1

managed by +manager

1

+department 1

develops

+projects 0..*

+employees

0..*

works for+department

1
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the incremental checking has to visit with our experiment 

design. 

The second experiment tries to measure the extra time taken for 

consistency checking in the total transaction time. For this case, 

we set a fixed object graph size of 4000 objects (the previous 

experiment showed the checking time is independent from the 

object graph size) and measure the business execution and 

checking times for each use case. The result is shown in the Fig. 

9. 

 

Fig. 9. Execution time vs checking time for each use case. 

The graph shows different increments, ranging from 20% to 

80%. That oscillation indicates that there is no structural 

deficiency on the checking system, as in that case all the ratios 

will be high. This difference comes from the fact that business 

and the checking operations can have different complexities, 

being independent from one another. A small modification in 

the object graph might raise one or more complex checking, 

while a complex business operation might affect just one 

simple-to-check constraint.  

9. CONCLUSIONS 

The proposed solution takes the best of STM and OCL worlds 

and benefits both. On the one hand, it solves the developers’ 

difficulties to implement constraint checking mechanisms. The 

use of an STM easies the when and what-to-do difficulties of 

constraint implementation, while incremental OCL checking 

techniques and code generation solves the how and over-what-

objects difficulties. On the other hand, it allows to enrich the 

Consistency property of current STM systems in a way 

independent of the concrete STM implementation. 

As shown with the experiments that integration seems to be 

feasible and performs well, not introducing structural overloads 

in total transaction time.  
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