
 

Commercialization Potential for Deep Machine Learning Technology Using Line 
Scan Camera 

 
Vladimirs ŠATREVIČS 

 Riga Technical University 
Riga, LV-1048, Latvia 

 
Gundars KUĻIKOVSKIS 

Zippy Vision SIA 
Antonijas street 5, Riga, Latvia, LV-1010 

 
Oskars OŠS 

Zippy Vision SIA 
Antonijas street 5, Riga, Latvia, LV-1010 

 
 

ABSTRACT 
 

In the paper, it is proposed to transfer a food industry`s machine 
learning knowledge to wood or construction industry. The 
universal machine vision system has great potential for the 
scalability. In modern industrial processes, fast and efficient 
detection of defects plays a crucial role in quality control. In 
most industrial processes, the defect detection process still relies 
on the visual inspection of trained workers with low detection 
efficiency and precision. Wood or metal defect detection 
increases the automation of the industry, making it less labour 
intensive, less costly and with improved efficiency. During the 
project, we proved that quality control inspection system with 
Machine Learning technology developed for the industry can be 
scaled up and using the same technology stack moved to the 
wood and construction industry. The main difference is the size, 
form and speed of conveyors. During the project, the inspection 
system achieved the necessary functionality and precision. A 
further scalability opportunity of the system using Machine 
Learning is obvious, requiring less time and labour than 
conventional quality control methods.  
 
Keywords: Quality control, Machine Vision, Machine Learning, 
knowledge transfer, scalability, commercialisation   
 

1.  INTRODUCTION 

 
The machine vision system detects any artefacts on the wood or 
metal surface (stain, shallow pit, shallow tumours, scratches, 
edge defects, pattern defects). It provides necessary quality 
control regarding the processing of the size, diameter, 
eccentricity, height, thickness and other parts of the non-contact 
numerical parameters of detection. Ability to identify machining 
processes that produce specific machined surfaces is crucial in 
modern manufacturing production. Image processing and 
computer vision technologies have become indispensable tools 
for automated identification with benefits such as a reduction in 
inspection time and avoidance of human errors due to 
inconsistency and fatigue [1]. The development of a machine 
learning detection systems will contribute to technological 
innovation, industry, national development and other 
applications.  
Often, workers manually carry surface quality control. 
Companies train workers to identify complex surface defects due 
to their wide variety and sophistication in requirements. Such 
control is; however, very time consuming, inefficient, and can 

contribute to a severe limitation of the production capacity [2]. 
Nevertheless, dynamic environment paradigm and the Industry 
4.0 trend is moving towards the generalisation of the production 
line, where rapid adaptation to a new product is required [3]. 
Classical machine-vision methods are unable to ensure such 
flexibility. Typically, in a traditional machine-vision approach, 
features must be predefined to suit the particular template or 
pattern. Hand-engineering of features still plays a vital role in 
classical methods. Usually, it is challenging to transfer hand-
engineered features based systems to another domain, and it leads 
to the long process to adapt systems to different products or even 
domains. Data-driven, machine-learning approaches provide a 
solution that allows for improved flexibility where the developed 
methods can be quickly adapted to new types of products and 
surface defects using only the appropriate number of training 
images [4]–[7].  
Compared to classical machine vision methods, the deep learning 
can directly learn features from low-level data and has a higher 
capacity to represent complex structures, thus completely 
replacing hand engineering of features with the automated 
learning process. With a rapid adaptation to new products, this 
method becomes very suitable for the flexible production lines 
required in Industry 4.0 [2]. CNN (Convolutional neural 
networks) has the capability of learning more powerful 
representations of the defects and better balance the identification 
of one defect against misclassification of another, achieving an 
overall accuracy of 93.4% [8]. Technologies are moving fast 
from electrified to automated, to digitalised manufacturing, such 
as big data, autonomous robots, IoT, cybersecurity and 
augmented reality are transforming the modern manufacturing 
landscape towards Machine Learning capabilities, increasing its 
popularity. 
Previous studies have shown that vision systems can be used to 
analyse to estimate any quality of surfaces, detect defects and 
damage, and estimate physical properties of product and 
packages in many industries [9]–[14] [15]. Over the past few 
years, deep learning has demonstrated outstanding performance 
in classification [16], detection [17], and recognition [13], [18]–
[20]. 
Machine vision can interpret and adapt to any data as needed, 
verify and process then transmit the results to the systems of the 
value chain in every phase of production leveraging its scalability 
opportunities [21], [22].  
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2.  SCALABILITY AND APPROACH 

 

Nevertheless, the question about scalability still remains: what is 
the volume of annotated data required, what kind of data and how 
precise do the annotations need to be to achieve a performance 
suitable for practical applications? This is a particularly 
important question when dealing with deep-learning approaches 
as soon as deep models with millions of learnable parameters 
often require thousands of images (dataset) and sophisticated 
requirements, which in practice is often difficult to obtain and 
define. Аccording to VDMA Organization, In German and 
Europe, the machine vision in industry sales records more than 
doubled in the years 2005 – 2015. In the last ten years, the 
turnover of the German machine vision industry has doubled. 
Between 2013 and 2017, the industry grew by an average of 13 
percent per year. According to current surveys, the VDMA 
expects the record level of 2.6 billion euros to be maintained in 
2018. Applying Machine Vision leads to improved quality, 
greater reliability, increased safety and cost-effectiveness [23].  
 
Approach and value proposition 

The question of applicability and scalability is very topical 
nowadays since learning factories provide an encouraging 
environment to apply and integrate technologies associated with 
digitised production environments and cyber-physical systems 
[24]. Learning Factories can be structured so that learners apply 
theory and calculation analysis to predefined problems or so that 
the learner employs heuristic methods to iteratively provide 
suggestions for problems which are not previously defined [25], 
[26]. The development of machine vision applications demands 
the combination of multidisciplinary knowledge and the 
identification of potential application areas. Learning Factories 
provide a promising environment for developing the 
competencies required from a future workforce to apply and 
integrate such technologies associated with Industry 4.0 [27], 
[28]. 

 

 
Figure 1. Schematic of Machine Vision system for detection of 
contamination of sealing and label inspection. 
 
The key goal of this paper is to use Learning Factory in order to 
effectively develop Machine vision competency for other 
industries. Machine vision is an encompassing term which 
includes the integration of both hardware and software for 
practical application. We have identified the following groups for 
our framework – the hardware and software. Our R&D process 
uses two camera hardware setup from the current project as an 
example, as shown in Figure 1.  
The system hardware consisted of a transport trailer, machine 
vision cameras, a host computer for image acquisition control 

(#5000 Processing unit) and data processing. Hardware control 
modules, controlling high-speed machine vision light controller 
and controlling lights allowing multiple pictures in one scan with 
different light and camera settings. Integrated annotation and 
quality evaluation system, capturing current results of the 
inspection together with the original pictures collected. 
Annotation system is set on the cloud for external annotators to 
be able to: 

· Annotate new original pictures 
· Estimate the quality of quality and precision of the 

existing system 
· Annotate new artefacts on the pictures 
· Export ground truth data for training new weights for 

neural networks 
System management module (software), allowing them to 
separate different modules and their dependencies, meanwhile 
connecting them in one system. Containerisation approach 
allows using different frameworks, languages and dependencies 
on the same computer, isolating every execution environment. As 
for the software, the proposed approach is demonstrated to be 
already suitable for a variety of application (Figure 2).  
 
 

 
 
 
 
 
 
 
Figure 2. Quality inspection system overview 
 
Scanning application (inputs) includes the following operations: 

· Capturing image of the product passing the scanner 
from different angles and light conditions 

· Delivering the image to the modules which analyse and 
reports findings 

· Controlling external physical equipment like ejectors 
and sorters 

· Collecting captured images and delivering them the 
annotation system to generate ground truth data for 
training machine learning systems 

· Connection the production management system for 
automated control, reporting and analysis 

· Despite the difference in different industries, the same 
set of operations shall be executed on any line and any 
product. 

 
An example of User-Defined quality criteria implemented 

during the project, is shown on Table 1. 
 
Table 1. User-defined quality criteria examples 

fault_type #code Description 

END_HOLE 174 Contaminated or 
damaged sealing 

IMAGE_ERROR 125 System could not capture 
and extract the package 
image. Usually it’s 
happen during setup or 
dirty camera 

LABEL_PRINT 6 When label is not printed 
or printed not in quality 

SEAM 5 Final seal damage 
 

Inputs 

Image dataset 
Image processing 

and interpetation: 
Segmentation and 
Decision 

User Defined 
quality criteria 

Output 

Inspection results 
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During the project following technology stack is developed 
concerning software-hardware system predefinition: 

· Hardware control modules, controlling line scan 
cameras 

· Hardware control modules, controlling high-speed 
machine vision light controller, controlling lights 
allowing multiple pictures in one scan with different 
light and camera settings 

· Data collection module on the factory floor for ground 
picture collection to improve system 

· Integrated annotation and quality evaluation system, 
capturing current results of the inspection together with 
the original pictures collected. Annotation system is set 
on the cloud for external annotators to be able to: 

· Annotate new original pictures 
· Estimate the quality of quality and precision of the 

existing system 
· Annotate new artefacts on the pictures 
· Export ground truth data for training new weights for 

neural networks 
· System management module, allowing to separate 

different modules and their dependencies, meanwhile 
connecting them in one system. Containerisation 
approach allows using different frameworks, 
languages and dependencies on the same computer, 
isolating every execution environment 

This project is using the deep-learning approach to surfaced 
defect detection with a segmentation network from the point of 
view of specific industrial application. A two-stage approach is 
presented. The problem of surface-anomaly detection is 
addressed as a binary-image-classification problem. This is 
suitable for surface-quality control, where an accurate per-image 
classification of the anomaly’s presence is often more important 
than a precise localisation of the defect. The first stage included 
a segmentation network trained on pixel-wise pictures of the 
defect. The second stage included an additional decision network 
build on top of the segmentation network to predict the presence 
of the anomaly for the whole image.  
Segmentation network will consist of several layers (based on 
goals) with different zoom ratio, to increase the rate of precision 
during the learning. The network is designed with two important 
requirements: the requirement for a large receptive field size in a 
high-resolution image and the requirement to capture small 
feature details [2], [29], this increases the capacity of features 
with large receptive field sizes (e.g. Figure 3). 
As for the decision network, the network performs global 
maximum and average pooling, resulting in output neurons. With 
a micro-defect image as the input, in the convolutional layer, the 
convolution kernel convolutes the feature map of the upper layer 
to generate the feature maps. 
 
 

 
Figure 3. Convolutions dynamics within CNN. Convolution 
between a feature map of dimension 5 × 5 (yellow) with a kernel 

of dimension 3 × 3 (brown), stride 1 and padding image 0. The 
result is another feature map of dimension 3 × 3 (green). [8] 
 
The design of the decision network follows two important 
principles. First, the appropriate capacity for large complex 
shapes is ensured by using several layers of convolution and 
down-sampling. This enables the network to capture not only the 
local shapes, but also the global ones that span a large area of the 
image. Second, the decision network uses not only output feature 
volume of the last convolutional operation from the segmentation 
network before channel reduction with 1 × 1 kernel, but also the 
final segmentation output map obtained after the channel 
reduction with 1 × 1 kernel. This introduces a shortcut that the 
network can utilise to avoid using a large number of feature 
maps, if they are not needed. It also reduces the overfitting to a 
large number of parameters. The shortcuts are implemented at 
two levels: one at the beginning of the decision network where 
the segmentation output map is fed into several convolutional 
layers of the decision network, and another one at the end of the 
decision network where the global average and maximum values 
of the segmentation output map are appended to the input of the 
final fully-connected layer. In contrast to other approaches, they 
use only a single layer and no down-sampling in the decision 
layers, and do not use a segmentation output map directly in the 
convolution but only indirectly through global max and average 
pooling. This limits the complexity of the decision network and 
prevents it from capturing large global shapes [2]. 
In the decision network learning takes place separately from the 
segmentation network. First, only the segmentation network is 
independently trained, then the weights for the segmentation 
network are frozen and only the decision network layers are 
trained. By fine-tuning only the decision layers the network 
avoids the issue of overfitting from the large number of weights 
in the segmentation network. This is more important during the 
stage of learning the decision layers than during the stage of 
learning the segmentation layers. Since the losses are applied for 
different scopes, i.e., one at the per-pixel level and one at the per-
image level, the accurate normalisation of both layers played a 
crucial role. The two-stage learning mechanism, therefore, 
proved to be a better choice and will be subsequently employed 
in all future experiments. 

 
 

3.  BUSINESS MODEL 

 
The future business models rely on the differences with the 
conventional commercial software. The experiments show that 
the predefined commercial software performs significantly worse 
than the proposed method when using lower resolution images. 
Usually, the commercial software struggles to capture finer 
details of the defect and requires a higher resolution for good 
performance.  
Learning on new domains is possible without any modification. 
The architecture can be applied to images that contain multiple 
complex surfaces, or it can be applied to detect another different 
defect [2] 
Commercialisation opportunities are highlighting three 
important aspects of the current situation:  

· the required manual inspection has dynamic detection 
rate with problems regarding human error (by 
additional manual verification of detections, double-
check problem),  

· the required human work is leading to the high human 
labour costs and time consumption  
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· the designed network is shown to outperform the 
related state-of-the-art methods (predefined 
templates), including the latest conventional ML 
commercial products. 

An effective vision system which is developed to identify defect 
fragments of packaging (sealing and labels) and surface to assess 
the level of product quality is a considerable value preposition 
(discussed previously). Therefore, the objectives of this research 
were to develop a scalable Machine Vision system that is able to 
fit into the requirements of different industry quality standards.  
With the popularity of Machine Vision, an inspection of surface 
and packaging has become very popular among manufacturers 
who strive to improve product quality and production efficiency 
towards digitalisation [30]–[32].  
Early defect detection reduces the risk of lost production. 
Manufacturing companies are trying to fit their digitalisation 
strategies according to the environmental feedback created by 
these strategies (or will find themselves at a relative disadvantage 
in exploiting their environments/resources in digitalisation 
strategies). In the current, more competitive and dynamic digital 
environment, the sustainability of competitive advantage exists 
when the system of competitive advantages is the high and 
overall value-added generated from all the components in the 
business model proposition is strong. 
It is necessary to recognise a mismatch of quality and price for 
new customer value. Considering the requirement of maintaining 
faster measurement speeds, tactile (contact) measuring 
instruments (e.g. conventional optical instruments) are often not 
suitable for in-line measurement because, while accurate, they 
are slow and can only measure a limited number of points on the 
surface of a part. [33]–[35].  
Subsequently, in many cases, standard optical instruments may 
be suitable for in-line measurement due to their advantages over 
tactile instruments, including the ability to obtain high-density 
data within relatively short measurement times, to gain access 
with complex geometries, and to measure surfaces without the 
risk of damage. However, there are many challenges that hinder 
the development of standard in-line optical instruments, 
including measurement methodology, speed, system integration 
and control, traceability and system intelligence [36]. 
Abovementioned challenges are not only relevant for standard 
optical instruments, but also for tactile measuring instruments, 
such as the ability to undertake multi-scale measurements (a 
measurement of form at hundreds of millimetre scales and 
surface texture at sub-micrometre scales) and to measure in noisy 
environments (for nanometric accuracy). Visual defect detection 
requires inspecting units from various view angles, given the 
non-constant relationship between illumination angle and the 
unit’s surface for this task. Machine Vision with the help of 
Machine Learning could successfully overcome optical and 
tactile instrument limitations in measurement working principles 
[37].  
Companies are trying to perceive actual customer behaviour for 
any products and services through feedback in order to develop 
consumer-oriented offers [38]. Nowadays company willingness 
to develop the latest digitalisation advantages is a key element 
for Machine Vision development opportunities, should take into 
consideration also availability of current digital Machine Vision 
environment.  
Also, customer values could be affected due to limited 
knowledge or industry peculiarities. Digitisation transforms 
business process models and processes (labour intensive) in 
many enterprises. However, many of them need guidance, how 
digitisation is impacting the design of their manufacturing 
process systems. It is not always possible to choose the new 

Machine Vision proposal that will determine and match with 
quality requirements values to succeed in the market. Often new 
Machine Vision business models could lead to misunderstanding 
among newly implemented quality standards and overall 
Machine Vision proposal capabilities. 
 
 

4.  CONCLUSIONS 

 

Therefore, we proved that quality control inspection system 
developed for the food industry can be scaled up in size and 
basically using the same technologies and the same technology 
transferred to wood or  construction industry where the main 
difference is the size, form and speed of conveyors. 
This paper explored a scalable deep-learning approach for 
surface defect detection with a segmentation network from the 
point of view of specific industrial application. A two-stage 
approach was presented. The first stage included a segmentation 
network trained on pixel-wise labels of the defect, while the 
second stage included an additional decision network build on 
top of the segmentation network to predict the presence of the 
anomaly for the whole image.  
Based on the framework created from the project it is possible to 
reduce labour costs within the visual inspection and increase 
efficiency compared to manual, semi-automated, and automated 
conventional optical systems. 
Machine Vision could eliminate optical and tactile instrument 
challenges concerning methods; speed; system integration and 
control; traceability; and intelligence limitations. Using Learning 
factory (in collaboration with the university) could develop 
interdisciplinary cooperation with respected entrepreneurial 
ecosystems partners.  
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