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ABSTRACT 
 

Multicore brings tremendous amount of processing speed. 

On the contrary, it offers challenges for embedded systems 

as embedded systems suffer from limited resources. Various 

cache memory hierarchies are proposed to satisfy the 

requirements of different systems. Traditionally, level-1 

cache memory is dedicated to each core. However, level-2 

cache can be shared (like Intel Xenon) or dedicated (like 

AMD Athlon). Level-2 shared cache enables each core to 

dynamically use up to 100% of available CL2. Level-2 

dedicated caches help each core to reduce latency when 

there is data / code sharing between the cores. However, it 

is not clear how level-2 shared and dedicated cache 

hierarchies should impact on the performance and total 

energy consumption for a set of applications. In this paper, 

we evaluate the impact of level-2 cache hierarchies (shared 

versus dedicated) on the performance and total energy 

consumption for homogeneous multicore embedded 

systems. We use VisualSim simulation tool to model the 

target architectures (one with shared CL2 and the other one 

with dedicated CL2). We use FFT, MI, and DFT workload 

(generated using Heptane package) to run the simulation 

program. Experimental results show that for negligible 

interconnection delay, level-2 shared cache hierarchy 

outperforms level-2 dedicated cache hierarchy.  
 

Keywords––Multicore Embedded System, Level-2 
Shared Cache, Level-2 Dedicated Cache, Performance 

Modeling, and Power-Aware Design  

 

1. INTRODUCTION 
 

Cache memory is first appeared in the IBM System/360 

Model 85 computer in 1968 to improve performance by 

reducing the speed gap between the CPU and the main 

memory. Almost immediately after that all gigantic chip-

vendors introduced cache to their processors [1][2]. Today, 

processors are having multiple processing cores and most 

processors have level-1 cache (CL1) and level-2 cache 

(CL2) [3][4][5][6]. The demand of multicore embedded 

systems is increasing and billions of transistors are possible 

in a single chip. As a result, the trend of using multicore 

systems is expected to increase for the next few decades. In 

a multicore processor, two or more independent cores are 

combined into a die. Usually, each core has its own CL1 – 

CL1 may be split into instruction (I1) and data (D1) caches. 

Most processors have unified CL2 – CL2 may be shared by 

the cores or distributed and dedicated to each core 

[7][8][9]. Intel’s Advanced Smart Cache works by sharing 

CL2 among the cores. It is optimized for multicore 

processors to improve performance. AMD's multicore 

processors have dedicated CL2. With cache memory, the 

system consumes more energy and cache makes the system 

more unpredictable [10][11][12][13][14][15][16]. It can be 

argued that neither of these two level-2 cache hierarchies is 

better for all workloads. The shared hierarchy 

outperforming the dedicated one on workloads with high 

level of data or code sharing as it simplifies cache 

coherence and eliminates coherency traffic between 

multiple dedicated caches at the same level. The opposite 

may be true for workloads composed of independent 

threads with little sharing [18].  

 

Multicore is a new direction for modern computing. In 

multicore embedded systems, performance and energy 

consumption are significantly affected by the cache memory 

hierarchy and applications. More cache miss means 

decrease in performance and increase in energy 

consumption. Various techniques are being used to reduce 

cache miss rate. Recently published articles show that 

multicore design improves the performance/energy ratio 

[4][5][7][13][15] by executing more number of instructions 

per cycle at a lower frequency. However, it is unknown how 

the level-2 cache hierarchies (shared and dedicated) impact 



on the performance and energy consumption. In this work, 

we focus on the impact of level-2 cache memory hierarchies 

(shared versus dedicated) on performance and total energy 

consumption.  

 

The outline of his paper is as follows. Contemporary level-2 

cache memory hierarchies used in popular multicore 

processors are described in Section 2. Some articles related 

to cache modeling in multicore systems are presented in 

Section 3. Section 4 explains experimental details used in 

this work. In Section 5, the simulation results are discussed. 

Finally, we conclude our work in Section 6.  
 

2. LEVEL-2 CACHE IN MULTICORE 

PROCESSORS 
 

Almost every PC built since the first cache memory 

appeared in IBM System/360 computer in 1968 has some 

sort of cache memory. In early 1990s, Intel 486DX4 and 

Pentium included off-chip level-2 cache. Contemporary 

multicore processors usually have dedicated level-1 cache 

and shared (example: Intel Xenon) or dedicated (example: 

AMD Athlon) level-2 cache (see Figure 1). Usually, level-2 

cache resides on the motherboard. However, level-2 cache 

is also seen on the microprocessor itself. Some 

manufacturers connect the microprocessor and the level-2 

cache with a backside bus to improve the performance. 

Recently, most manufacturers are adopting multicore 

processor or chip-level multiprocessor (CMP) for their 

future embedded systems to acquire additional processing 

speed and to save (battery) energy.  

 

 

Figure 1. Various contemporary multicore CPUs 

 

Intel dual-core has a shared CL2 (for example, dual-core 

Xenon has 64 KB I1, 64 KB D1, and one 4 MB CL2) while 

AMD dual-core employs distributed and dedicated CL2s 

(for example, dual-core Athlon Classic has 64 KB I1, 64 

KB D1, and two 512 KB CL2s) [8]. Shared CL2 enables 

each core to dynamically use up to 100% of available CL2. 

Dedicated CL2s help each core to reduce latency when 

there is data/code sharing between the cores. 

As shown in Figure 2, Intel quad-core (example, Xenon 

DP: 128 KB I1, 128 KB D1, one 8 MB CL2) has one 

shared CL2 [7]. In this work, we simulate a Xenon-like 

quad core with shared CL2. 

 

 

Figure 2. Quad-core architectures (Intel – Kentsfield XE) 

 

However, AMD quad-core (example, Opteron: 256 KB I1, 

256 KB D1, four 2 MB CL2s) has distributed and dedicated 

CL2s and a shared CL3 [5] as shown in Figure 3. CL3 of 

AMD Opteron processors may be 2 MB (Santa Rosa) or 4 

MB (Deerhound). In this work, we simulate an Opteron-like 

quad core with dedicated CL2 (excluding the CL3).  

 

 

Figure 3. Quad-core architectures (AMD - Opteron) 

 

IBM, with a joint project with Sony and Toshiba, has 

introduced the Cell multicore architecture, in a joint venture 

with Sony and Toshiba, to boost up the processing speed 

demanded by the 3D electronic games. The Cell chip may 

have a number of different configurations. The basic 

configuration is a multicore chip composed of one threaded 

Primary Processing Element (PPE) and multiple Synergistic 

Processing Elements (SPEs) [17][19][20][21]. In a typical 

Cell processor, CL1 is dedicated to the PPE and CL2 may 

be shared by the PPE and SPEs. A SPE is called a “Cell”. 

Each cell may have 256 KB SRAM and a 4x128 bit 

Arithmetic Logical Unit (ALU) which does the math in a 

processor and 128 of 128-bit registers. The Element 

Interconnect Bus (EIB) is the communication bus internal 

to the Cell processor which connects the various on-chip 

system elements: PPE processor, memory controller (MIC), 

SPE coprocessors, and off-chip I/O interfaces.  

 



3. RELATED WORK: CACHE MODELING 

IN MULTICORE SYSTEMS 
 

Various cache memory hierarchies have been proposed to 

improve the performance and to decrease the total power 

consumption of multicore embedded systems. Some 

selected work relating to cache modeling in multicore 

systems are discussed in this section.  

 

In [18], the performance of shared level-2 and distributed 

level-2 cache organizations has been studied using various 

kind of workload. Experimental results show that the shared 

level-2 cache organization outperforms the dedicated one 

on stressful workloads which increase the interconnect 

latencies between dedicated caches; while the dedicated 

private level-2 cache organization is superior on lighter 

workloads with smaller interconnect latencies. This work 

does not perform energy consumption analysis which is 

important for embedded systems.  

 

In [22], a comparative performance and energy analysis is 

provided for cache-coherence support schemes in multi-

processor system-on-a-chip (MPSOC). Experimental results 

show that hardware based solution needs more power when 

traffic grows. This work does not provide any good 

solutions to improve performance and to decrease the 

power consumption in MPSOC.  

 

In [23], a hardware/software methodology is proposed to 

make the caches coherent in heterogeneous multiprocessor 

platforms with shared memory. This experiment shoes that 

the performance improvement can be achieved with low 

miss penalty at the expense of adding simple hardware, 

compared to a pure software solution. Speedup can be 

improved even further as the miss penalty increases. This 

approach provides embedded system programmers a 

transparent view of shared data, removing the burden of 

software synchronization. This methodology is neither 

applicable for dedicated CL2 architecture nor suitable for 

analyzing energy consumption.  

 

In [24][25], two approaches are presented to cope with the 

predictability problem due to cache in real-time systems. 

According to these approaches, cache contents are statically 

locked so as to make memory access time and cache-related 

preemption delay predictable. However, more study is 

needed to see the applicability of static cache locking 

techniques on various level-2 cache schemes and the impact 

of these approaches on performance and energy 

consumption for larger real benchmarks.  

 

In [26], we model and simulate a multicore system using 

VisualSim where level-1 cache is dedicated to each core 

and level-2 cache is shared. Experimental results show that 

the execution time predictability of applications running on 

multicore systems can be improved with negligible impact 

on the ratio of performance to energy consumption by using 

cache optimization technique.  

 

4. EXPERIMENTAL SETUP 
 

Assumptions 
The following assumptions are made to model the target 

architectures (with shared CL2 and dedicated CL2) and to 

run the simulation program.  

 

1) For simplicity, both multicore systems (one with shared 

CL2 and the other one with dedicated CL2) are 

considered to be homogenous. 

2) In both shared and dedicated CL2 architectures, CL1 

size (I1 size + D1 size) is the same. 

3) Interconnection delay is negligible. 

4) Total CL2 sizes in both shared and dedicated CL2 

architectures are the same. For shared CL2 

architecture, CL2 size = k x Number of cores x CL1 

size; where k = 1, 2, 4, and 8. For dedicated CL2 

architecture, each CL2 size = k x CL1 size; where k = 

1, 2, 4, and 8.  

 

Simulated Architectures 
In this work, our goal is to investigate the impact of level-2 

cache memory hierarchies (shared and dedicated) on 

performance and energy consumption. Based on 

contemporary multicore processor design trends from Intel, 

AMD, and IBM we simulate two similar multicore 

embedded systems, one with one shared CL2 and the other 

one with four dedicated CL2s.  

 

As shown in Figure 4, we use Intel-like Advanced Smart 

Cache where CL1s are dedicated to the cores and one CL2 

is shared among the cores so that data is stored in one place 

that each core can access. Here CL2 enables each core to 

dynamically use up to 100 percent of available CL2.  

 

 

Figure 4. Simulated quad-core processors – shared CL2 

 

Also shown in Figure 5, we use AMD Opteron-like 

processor where both a CL1 and a CL2 are dedicated to 

each core (unlike AMD Opteron, we exclude CL3 in our 



architecture). In this architecture, CL2 helps each core to 

reduce latency when there is little data and/or code sharing 

between the threads running on each core.  

 

 

Figure 5. Simulated quad-core processors – dedicated CL2 

 

Workload 
In this work, we use workloads that are generated from Fast 

Fourier Transform (FFT), Matrix Inversion (MI), and 

Discrete Fourier Transform (DFT) applications. Useful 

information about FFT, MI, and DFT is shown in Table 1.  

 
Table 1. Information about FFT, MI, and DFT applications 

Application 

Name 

Code 

Size (B) 

Number of 

Instructions 

Proc. Cycles 

Needed 

FFT 2335 365184 16224629 

MI 1468 227518 9801353 

DFT 1158 171307 7996174 
 

We use Heptane [27] and VisualSim [28] simulation tools. 

Heptane takes C code (application) as the input and 

generates tree-graph showing the blocks that cause cache 

misses. After post-processing the tree-graph a Miss Table 

showing the number of misses caused by the blocks is 

generated. Using VisualSim, a simulation platform is 

developed to model and simulate multicore embedded 

systems. Miss Table is used to run the VisualSim simulation 

program. 

 

5. RESULTS AND DISCUSSION 
 

In this work, we explore the impact of the level-2 cache 

hierarchies (shared and dedicated) on the performance and 

energy consumption of homogeneous multicore embedded 

systems. We use mean delay to express the performance 

(decrease in average delay means improve in performance). 

We keep level-1 cache size fixed at I1 = 2KB and D1 = 

2KB. Throughout the experiment we use random cache 

replacement policy and write-back write miss policy. 

Assuming negligible interconnection delay and using FFT, 

MI, and DFT workloads, we obtain results for embedded 

systems with 4 cores. We define delay as the number of 

processor cycles between the start of execution of a task 

and the end. Mean delay is the average delay of all the tasks 

used in VisualSim simulation. In order to weight the impact 

of various CL2 sizes, we keep the total CL2 size identical 

for both shared and dedicated CL2 architectures.  

 

The average delay per core Vs total CL2 size for shared 

CL2 hierarchy is shown in Figure 6. Experimental results 

show that the mean delay per core decreases with the 

increase of CL2 size for all three applications. The decrease 

is significant for smaller CL2 size (16 to 32 KB). Results 

also show that the mean delay for FFT workload is higher 

than that of MI or DFT.  
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Figure 6. Mean delay per core for shared CL2 architecture Vs 

CL2 size 

 

For dedicated CL2 architecture, total CL2 size = number of 

cores x size of each CL2 (and each CL2 size = k x CL1 

size; where k = 1, 2, 4, and 8). In Figure 7, the average 

delay per core Vs total CL2 size for dedicated CL2 

hierarchy is shown. For all three applications, the decrease 

in mean delay is significant for smaller CL2 size (16 to 32 

KB). It is also noticed that the mean delay for FFT 

workload is higher than that of MI or DFT.  

 

Delay per Core Vs Total CL2 Size (Dedicated CL2)
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Figure 7. Mean delay per core for dedicated CL2 
architecture Vs CL2 size 



Based on the results shown in Figures 6 and 7, for both 

shared and dedicated CL2 hierarchies the mean delay per 

core decreases with the increase of CL2 size for all three 

applications. It is also observed that for all three 

applications and all CL2 size considered the FFT workload 

takes more memory access time when compared with that 

of MI and DFT workload. Next, we compare the mean 

delay per core and total energy consumption Vs total CL2 

size for shared and dedicated CL2 hierarchies using FFT 

workload (MI and DFT are expected to produce similar 

impact on delay and total energy consumption).  

 

Experimental results show that mean delay per core 

decreases with the increase in CL2 size for both shared and 

dedicated CL2 hierarchies [see Figure 8]. However, the 

delay for shared CL2 hierarchy is significantly smaller than 

that of dedicated CL2 hierarchy. 
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Figure 8. Mean delay per core Vs CL2 size 

 

Similarly, the total energy consumption decreases with the 

increase of CL2 size for both shared and dedicated CL2 

hierarchies (see Figure 9). But, the decrease in energy 

consumption for shared CL2 hierarchy is more significant 

than that of dedicated CL2 hierarchy.  
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Figure 9. Total energy consumption Vs CL2 size 

In summary, when we change the total CL2 size from 16 

KB to 128 KB, the shared CL2 hierarchy reduces delay by 

45% and total energy consumption by 33% but the 

dedicated CL2 hierarchy reduces delay by 33% and total 

energy consumption by 22%.  

 

6. CONCLUSIONS 
 

From recent studies we know that multicore design 

improves the ratio of performance to energy consumption. 

Typically in a multicore architecture, level-1 cache is 

dedicated to each core. However, level-2 cache can be 

shared or dedicated. Level-2 shared cache enables each 

core to dynamically use up to 100% of available CL2. 

Level-2 dedicated caches help each core to reduce latency 

when there is data and/or code sharing between the cores. It 

is not very clear how level-2 shared and dedicated cache 

hierarchies impact on the performance and total energy 

consumption for a target set of applications. In this paper, 

we explore the impact of level-2 cache hierarchies (shared 

versus dedicated) on the performance and total energy 

consumption for homogeneous multicore embedded 

systems. Using VisualSim, we model and simulate two 4-

core architectures (one with shared CL2 and the other one 

with dedicated CL2). We use FFT, MI, and DFT workloads 

(generated by Heptane package) to run the simulation 

programs. For simplicity, we assume that the 

interconnection delay is negligible. Experimental results 

show that for any size of CL2, the mean delay and the total 

energy consumption due to the shared CL2 architecture is 

smaller when compared with those of dedicated CL2 

architecture. This is because the workload used is lighter 

from the level-2 cache's perspective. The impact may be 

different if the interconnection delay is significant and 

heavier workloads (like MPEG-4 application) are used.  

 

We plan to repeat our experiments with significant 

interconnection delay and running real-time applications 

including MPEG-4 and H.264/AVC in the future.  
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