
Latencies in Linux and FreeBSD kernels with different
schedulers – O(1), CFS, 4BSD, ULE

Jaroslav ABAFFY

Faculty of Informatics and Information Technologies
Slovak University of Technology

Bratislava, 842 16, Slovakia

and

Tibor KRAJČOVIČ

Faculty of Informatics and Information Technologies,
Slovak University of Technology

Bratislava, 842 16, Slovakia

ABSTRACT

This paper is a study of scheduler latencies in different

versions of Linux 2.6 kernel with emphasis set on its

usage in real-time systems. It tries to find the optimal

kernel configuration leading to minimal latencies using

some soft real-time tuning options. Benchmark tests

under heavy load show differences between kernels and

also between different scheduling policies. We compare

Linux kernel 2.6.22 with a long-acting O(1) scheduler

with the to date latest Linux kernel 2.6.28 that already

uses a completely new CFS scheduler. Not only a

scheduler, but also other kernel options can lead to

latency reducing. We compare a kernel compiled for

server employment and then tuned to act as a soft real

time operating system. For better comparison we perform

selected benchmarks also on FreeBSD 7.1 kernel

compiled with the older 4BSD scheduler and with the

newer ULE scheduler. ULE scheduler was improved in

the version 7 of FreeBSD, so we compare it also with

ULE in FreeBSD 6.3. The emphasis of this paper is set

on finding a scheduler with minimal latencies on tested

hardware.

Keywords: Latency, Linux, FreeBSD, Scheduling,

Benchmark, Kernel.

1. INTRODUCTION

Linux and FreeBSD were developed as general purpose

operating systems without any consideration for real-time

applications and are widely used as server operating

systems. In recent years they have become attractive also

as desktop operating systems, and nowadays they find

their way to the real time community due to their low cost

and open standards. There is a big dilemma not only in

programming operating systems called throughput vs.

latency. There is a large throughput expected in servers,

but in embedded systems the main goal is low latency.

Methodology used for finding optimal kernel

configuration is based on setting relevant kernel options,

compiling the kernel, and running benchmarks on it. With

this method we are able to acquire the optimal kernel

with CFS scheduler and also with O(1) scheduler. These

kernels are compared with one another and also

compared with versions compiled in default

configuration. For FreeBSD we use default configuration,

but once with 4BSD and then with ULE scheduler.

The benchmark primary used for comparison of these

kernels was Interbench. During the tests we found out

that this benchmark can under several conditions cause

inaccurate results. That provoked us into developing

other benchmark called PI-ping. With this tool we are

able to compare latencies under heavy load and are also

able to explain previous misleading results. Our results

were then approved by another benchmark – Hackbench.

PI-ping is based on two different types of process that

occur in operating systems. In the first group there are

processes that demand a lot of CPU. Other processes are

interactive – they request good latencies. In this

benchmark we use for the first group a computation of

the number Л, and as interactive process we use network

ping to localhost every 100 ms. This time was already a

long time ago empirically determined as the maximum

latency when the user considers the system as interactive.

Therefore it is widely used in different operating systems

as a default amount of time assigned by the scheduler to

the process between two task switches. Computation of

the number Л is used to prevent any optimization by the

compiler because the ciphers are not predictable. With

this tool we are able to compare how well the kernel and

the scheduler is desirable for CPU consuming processes,

and we can also see how many interactive process can

under heavy load meet their deadlines.

2. TESTED KERNELS

Linux 2.6.22 with O(1) scheduler
This kernel is the latest Linux kernel that uses O(1)

scheduler. The name of the scheduler is based on the

popular big O notation that is used to determine the

complexity of algorithms. It doesn't mean that this

scheduler is the fastest, but it means that it can schedule

processes within a constant amount of time independent

on the number of tasks running in the system. Therefore,

this scheduler is suitable for real-time application because

it guarantees the highest scheduling time.

Linux 2.6.28 with CFS scheduler
Since the version 2.6.23 Linux kernel comes with

Completely Fair Scheduler (CFS) that is the first

implementation of a fair queuing process scheduler in

widely used general-purpose operating systems.

Schedulers in other operating systems (and also O(1)

scheduler) are based on run queues, but this scheduler

arranges processes in a red-black tree. The complexity of

this scheduler is O(log n).

The main advantage of a red-black tree is that the longest

path in this tree is at most twice as long as the shortest

path. This scheduler was written to accept different

requirements in desktops and in servers.

FreeBSD 7.1 with 4BSD scheduler
4BSD is the default scheduler in all FreeBSD versions

prior to 7.1, although there is a new scheduler called ULE

since FreeBSD 5.0. It is the traditional Unix scheduler

inherited from 4.3BSD, but in FreeBSD there were added

scheduling classes. It is also based on run queues as the

Linux O(1) scheduler.

FreeBSD 7.1 with ULE scheduler
The name of this latest scheduler in FreeBSD comes from

the filename where is it located in source code of the

kernel /sys/kern/sched_ule.c. In comparison to O(1) and

4BSD there are not two run queues, but in this case three:

idle, current and next. Processes are scheduled from the

queue current, and after expiration of their time slice they

are moved to the queue next. Rescheduling is made by

switching these two queues. In the queue idle there are

idle processes.

The main advantage of this scheduler is that it can have

run queues per processor, what enables better

performance results on multiprocessors. In this paper we

perform selected benchmarks also on older ULE

scheduler from FreeBSD 6.3 to see if there were made

significant improvements as presented in [7].

3. INTERBENCH BENCHMARK

For testing different kernels we used a program named

Interbench that generates system load and measures

latencies under different conditions. Tested interactive

tasks are:

• Audio - simulated as a thread that tries to run at 50ms

intervals that then requires 5% CPU (20 times in a

second)

• Video - simulated as a thread that uses 40% CPU and

tries to receive CPU 60 times per second.

• X - simulated as a thread that uses a variable amount of

CPU ranging from 0 to 100%. This simulates an idle GUI

where a window is grabbed and then dragged across the

screen.

• Server - simulated as a thread that uses 90% CPU and

tries to run at 20ms intervals (20 times in a second). This

simulates an overloaded server.

These tasks were tested under different system loads:

• None - otherwise idle system.

• Video – the video simulation thread is also used as a

background load.

• X - the X simulation thread is used as a load.

• Burn – 4 threads fully CPU bound.

• Write - a streaming write to disk repeatedly of a file the

size of physical ram.

• Read - repeatedly reading a file from disk of the size of

physical ram.

• Compile- simulating a heavy 'make -j4' compilation by

running Burn, Write and Read concurrently.

• Memload - simulating heavy memory and swap

pressure by repeatedly accessing 110% of available ram

and moving it around and freeing it.

• Server - the server simulation thread is used as a load.

Each test was performed for 30 seconds and used 1 055

301 CPU cycles per second, so it can be considered as a

sufficient time to obtain relevant data. The whole test

took ca. 20 minutes.

Soft real-time kernel options
For finding a kernel configuration that leads to minimal

interrupt latency we used as a reference kernel the kernel

in default configuration, and then we were adding some

relevant options in kernel configuration. This tuned

kernel was compared to the default configuration to see if

it has improved the real-time performance. Best results

were achieved using these kernel options:

• Dynamic ticks

• High Resolution Timer Support

• Timer frequency 1000 HZ

• HPET Timer Support

• Preemptible Kernel

• Preempt The Big Kernel Lock

Kernel compiled with these options is in this paper called

soft real-time – SRT. Kernel without these options is

called Server because it desires better throughput instead

of low latencies.

Interbench results
In following graph (Fig .1) there are shown the average

latencies, their standard deviations, and maximal

latencies the simulated video thread under different

system loads when using the default configuration of

Linux kernel 2.6.22. We tested all mentioned tasks, but

in the video thread benchmark there are the differences

most visible.

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Latency (ms) SD(ms) Max Latency (ms)

None

X

Burn

Write

Read

Compile

Memload

Server

Fig. 1. Latencies in kernel 2.6.22 – Server (lower is

better)

After compiling the kernel using soft real-time kernel

options we were able to achieve improvements in these

latencies (Fig. 2). Only under the load X which represents

a user activity in graphical interface, there is degradation

especially for the maximal latency. This can be explained

so that in the time when the benchmarked video thread

required the CPU also the X thread demanded a lot of

CPU. Video thread requires 40% of CPU every one

second, but X demands variable amount in random times.

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Latency (ms) SD(ms) Max Latency (ms)

None

X

Burn

Write

Read

Compile

Memload

Server

Fig. 2. Latencies in kernel 2.6.22 – SRT (lower is better)

In the next graph (Fig. 3.) there are the results for Linux

2.6.28. Using different kernel options did not lead in this

case to such observable impact on scheduling latencies,

the reason is explained by the author of this scheduler

Ingo Molnar: “CFS uses nanosecond granularity

accounting and does not rely on any jiffies or other HZ

detail. Thus the CFS scheduler has no notion of

'timeslices' and has no heuristics whatsoever.”[5]

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

80.000

90.000

100.000

Latency (ms) SD(ms) Max Latency (ms)

None

X

Burn

Write

Read

Compile

Memload

Server

Fig. 3. Latencies in kernel 2.6.28 (lower is better)

GFS scheduler
Benchmarking these kernels using Interbench has shown

big differences between Linux 2.6.22 and 2.6.28. The

main question that appeared is why was CFS scheduler

included into the main kernel when it has such

performance overhead compared to O(1) under almost all

conditions. CFS defeats only when no other load is in the

system, or when the load simulating graphical user

interface is presented.

CFS should have perform with low latencies especially

under the loads when some processes are interactive, and

the other are CPU demanding. In our case these CPU

demanding processes are the loads Burn, Compile, and

Server where CFS theoretically has to have better results,

but practically these were the loads where it has its

biggest problems.

Problem with Interbench is that it runs benchmark and

load as threads within one process. CFS scheduler tries to

distribute the resources fair between processes, and

parent processes share their assigned time quantum with

their children. In the case when Interbench uses CPU

demanding thread as a load and benchmarks interactive

thread like video, CFS scheduler divides the quantum

between these threads.

In the next table (Tab. 1.) we run Interbench thread Video

with no other load from one shell and the load Burn

representing 4 processes demanding 100% CPU from

another shell. This load was selected because it depends

mostly on CPU; other loads use also a lot of memory and

IO operations. Different kernel versions can have

different IO schedulers and memory management, and we

target now on the scheduler.

Tab. 1. Latencies with GFS

Latency

(ms)

SD

(ms)

Max

Latency

(ms)

%

Desired

CPU

%

Deadlines

Met

O(1) 0.021 0.436 16.70 100.00 99.90

CFS 20.700 25.300 59.5 69.70 19.30

CFS –

2 shells
16.200 20.500 36.20 83.80 32.90

CFS +

GFS
0.007 0.008 0.018 100.00 100.00

An extension called Group Fair Scheduler (GFS) was

added to the CFS scheduler in Linux kernel 2.6.24. It

enables fair CPU sharing between groups of processes, in

this case based on user ID. If user A runs 100 processes

and user B 5 processes, both of the users become 50% of

CPU independent on the number of processes. So we run

the benchmark under two different users and achieved so

already better results than with O(1) scheduler.

Interbench problems
When using Interbench, we found out several problems.

It benchmarks only one thread and says nothing about the

threads that are used as load. When we run Interbench

with 100 load processes in Linux 2.6.22, the system was

very slow, and the test took 60.261 seconds compared to

32.537 seconds in 2.6.28. Also interaction to user inputs

was very slow, but the results said something else.

Interbench is available only for Linux, and we wanted to

compare Linux and FreeBSD kernels. This motivated us

to create an own benchmark.

4 PI-PING BENCHMARK

Pi-ping uses two types of processes for benchmarking

which appear in operating systems. One of them are

interactive tasks demanding low latencies, the other

group are processes with high CPU utilization. Modern

operating systems have to perform well under both

conditions.

In the following graph (Fig.4.) there is shown how many

deadlines were met by an interactive process ping. The

calculation is simple, we run ping every 100 ms and

measure the time of the whole benchmark rounded up to

100 ms. After dividing this time by 100 we obtain the

number of expected successful pings. The ratio of

measured pings compared to the number of expected says

how many deadlines were met.

Most of the benchmarks are designed either for latency

measurements or for performance comparison, but we

wanted to compare both of them. As

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 7 20 54 148 403 1096 2980 8103

Number of load processes

D
e
a
d
li
n
e
s
..

m
e
t
[%
]

CFS

ULE-6.3

ULE-7.1

4BSD

O(1)

Fig. 4. Percentage of met deadlines in dependence of the

number of load processes (higher is better)

Using this benchmark we obtained completely different

results than in using Interbench. CFS succeeded already

under the load of more than 8000 processes, and always

100% of the interactive processes met their deadlines.

O(1), 4BSD and ULE-7.1 have similar characteristics, but

be aware of the logarithmic axis used in this graph. The

latest ULE scheduler in FreeBSD 7.1 can also be

considered as a low latency scheduler since it also covers

100% deadlines when the number of load processes is in

acceptable limits. Already servers are often limited by

administrators to maximal 1024 processes, and now we

focus on latencies in small systems.

Surprising was the decrease of O(1) scheduler, by only 2

load processes running in background the ping

responsiveness was only around 80%. In Interbench

benchmark we achieved with the same kernel 99.9%

coverage of deadlines by 4 load processes using Video

thread as test which demanded 40% of CPU. How is it

possible that CPU consuming test scores better than a

small ping process?

PI-ping shows also problems with ULE scheduler in

FreeBSD 6.3. Results in the graph (Fig.4.) are the

average values measured in 3 benchmarks. Other

schedulers have balanced characteristic, and the results

were almost same in each experiment. In following graph

there are the results of three measurements of ULE-6.3

scheduler.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 7 20 54 148 403 1096 2980 8103

Number of load processes

D
e
a
d
li
n
e
s
 m
e
t.
..

ULE-6.3 1

ULE-6.3 2

ULE-6.3 3

Fig. 5. Results of ULE-6.3 in 3 measurements

As you can see, by raising the number of processes the

results of ULE scheduler become in FreeBSD 6.3

instable.

We also wanted to perform benchmark not only for

interactive tasks, but also for CPU demanding processes

like computation of the number Л. In the following graph

CFS is used as reference scheduler and the speed of other

schedulers is calculated as the time of CFS divided by the

time of the other scheduler.

0.75

0.8

0.85

0.9

0.95

1

1.05

1 2 7 20 54 148 403 1096 2980 8103

Number of load processes

R
e
la
ti
v
e
 s
p
e
e
d
 t
o
C
F
S
…
…

CFS

O(1)

ULE-6.3

4BSD-6.3

ULE-7.1

4BSD-7.1

Fig. 6. Relative speed of Л computation compared to

CFS (higher is better)

In this test FreeBSD is approximately 10% slower than

Linux. It can be caused by optimization because Linux

was compiled for i686 and FreeBSD for i386, by the

different implementation of task switching routine, by the

concept of forking processes, or by any other kernel

options than scheduler. Important is that for the

computation of Л the scheduler doesn’t have high impact.

These processes do not use any shared memory, pipes,

mutexes, lot of IO operations et cetera and always use the

whole time slice assigned by the scheduler which is 100

ms by default in the both operating systems. If we run for

example 10 processes, each running for 10 seconds, the

computation should take 100 seconds in ideal case. But in

the real case it is higher because of the overhead caused

by operating system, rescheduling, and other running

processes in the system.

When comparing FreeBSD with ULE scheduler and with

4BSD, the results are almost the same. Small differences

are only between different versions (7.1 versus 6.3), but

the curves look similar. ULE and 4BSD are based on run

queues with the complexity O(1), so for these non-

interactive tasks they perform equal. But in case of Linux,

we can see the confrontation of the CFS scheduler with

O(log n) complexity with the older O(1) scheduler. For

smaller numbers of processes CFS performs better, but if

there are a lot of processes, O(1) takes advantage of its

better complexity. In this case the intersection of O(1)

and O(log n) was experimentally set at the point, where

500 processes are in the system.

5 HACKBENCH BENCHMARK

In previous benchmark we have inspected instable results

of ULE scheduler in FreeBSD-6.3 and demonstrated that

CFS performs better for interactive processes and has

also better results for non-interactive processes when

there is not too much of them.

To approve the results of PI-ping benchmark we used

another test called Hackbench. This benchmark launches

a selected number of processes that either listen on a

socket or on a pipe and complimentary the same number

of processes that send 100 messages to the listening

processes.

The results of the benchmark are in the graph (Fig.7.), but

now we use not average values, but from only one

benchmark, to depict the differences in stability of ULE-

6.3 and ULE-7.1. In this benchmark ULE-6.3 performs

better for smaller number of processes, but then becomes

the instability predicted by PI-ping visible. CFS, O(1) and

ULE-7.1 have linear characteristic.

0

5

10

15

20

25

30

35

40

4
0

1
6
0

2
8
0

4
0
0

5
2
0

6
4
0

7
6
0

8
8
0

1
0
0
0

1
1
2
0

1
2
4
0

1
3
6
0

1
4
8
0

1
6
0
0

1
7
2
0

1
8
4
0

1
9
6
0

Number of processes

ti
m
e
 [
s
].
.

4BSD

ULE-6.3

ULE-7.1

O(1)-2.6.22

CFS-2.6.28

Fig. 7. Results of Hackbench benchmark (lower is better)

The curves of CFS and O(1) are very near to each other.

To make it more visible, we show the results as the

relative latency per process to CFS (Fig.8.). We can see,

that O(1) nearest very slowly to CFS. In case of Pi-ping,

the Л processes were CPU demanding, Hackbench

processes are pure interactive. That is the reason why in

PI-ping by already 500 processes O(1) performed better

then CFS. CFS is designed to favoritism small and fast

processes.

-0.005

0

0.005

0.01

0.015

0.02

0.025

4
0

1
6
0

2
8
0

4
0
0

5
2
0

6
4
0

7
6
0

8
8
0

1
0
0
0

1
1
2
0

1
2
4
0

1
3
6
0

1
4
8
0

1
6
0
0

1
7
2
0

1
8
4
0

1
9
6
0

Number of processes

ti
m
e
 [
s
].
. 4BSD

ULE-6.3

O(1)-2.6.22

ULE-7.1

Fig. 8. Relative latency per process compared with CFS

(lower is better)

6. TESTING HARDWARE

For testing and benchmarking was used a common laptop

with 1 GB RAM and Celeron M processor at 1.6 GHz.

Important is that the used processor is single-core. Using

multi-core processor with enabled symmetric

multiprocessing would affect the results in significant

way.

7. CONCLUSION

The results and graphs show that the new Linux scheduler

CFS really competes in both employments – in a server

field demanding high throughput and also in embedded

systems demanding low latencies. Other schedulers

compared in this paper are based on run queues; this one

organizes processes in a red-black tree. Computational

complexity of other schedulers is O(1), CFS has the

complexity O(log n). We have shown that CFS performs

better than O(1) for computational tasks when the number

of processes is smaller than approximately 500. This was

by us experimentally defined as the intersection of O(1)

and O(log n) functions in this case. But for interactive

tasks it performs better in all tested situations.

The goal of this work was to show that the complexity

O(log n) of the CFS scheduler is not a handicap for real

applications, and we can recommended also for

embedded systems demanding real-time performance.

We have also shown the improvement of ULE scheduler

in the latest version of FreeBSD. ULE in FreeBSD 7.1

performs better than long acting 4BSD and does not

suffer the problems inspected by using this scheduler in

FreeBSD 6.3.

8. ACKNOWLEDGEMENT

This work was supported by the Grant No.1/0649/09 of

the Slovak VEGA Grant Agency.

9. REFERENCES

[1] Benchmark Programs.

http://elinux.org/Benchmark_Programs [27.01.2009]

[2] Lukas Jelinek, Jadro systemu Linux, Computer

press, 2008

[3] Sanjoy Baruah and Joel Goossens, “Scheduling Real-

Time Tasks: Algorithms and Complexity”,

Handbook of Scheduling: Algorithms, Models
and Performance Analysis, Chapman & Hall/CRC,

2004

[4] Clark Williams, Linux Scheduler Latency

http://www.linuxdevices.com/articles/AT890659494

1.html [27.01.2009]

[5] Ingo Molnar, This is the CFS Scheduler

http://people.redhat.com/mingo/cfs-scheduler/sched-

design-CFS.txt [27.01.2009]

[6] Gilad Ben-Yossef, “Soft, hard and ruby hard real

time with Linux

http://www.scribd.com/doc/3469938/Soft-hard-and-

ruby-hard-real-time-with-Linux [27.01.2009]

[7] Kris Kennaway, “Introducing FreeBSD 7.0”

http://people.freebsd.org/~kris/scaling/7.0%20Previe

w.pdf [27.01.2009]

[8] Jaroslav Abaffy, “Interrupt Latency in Linux 2.6”,

Informatics and Information Technologies
Student Research Conference, Vydavatelstvo STU,

2008, pp. 387-393

