

Automation of Real-time Embedded System Design

Pavel KUCERA

Centre for Applied Cybernetics, Brno University of Technology

Brno, 61200, Czech Republic

and

Petr HONZIK

Department of Control and Instrumentation, Brno University of Technology

Brno, 61200, Czech Republic

ABSTRACT

The goal of this paper is to present a tool for

automation of designing of real-time embedded

system which time-behaviour description is based

on formal methods approach. Formal description of

the system is based on timed automata diagrams

and its temporal logic verification. The purpose of

this tool is to automate process of transferring timed

automata diagrams into real-time operating system

running in the embedded system hardware. This

tool significantly simplifies design, implementation

and verification of real-time embedded systems

because human resources will be concentrated more

on the area of specification and verification than

implementation issues. This software tool is being

developed as an open-source project under the

national grant agency support at the Department of

Control and Instrumentation, Brno University of

Technology.

Keywords

Real-time systems, Real-time operating systems,

Timed Automata, Temporal Logic, UPPAAL

1. INTRODUCTION

The area of formal methods is one of the most

dynamic domains of software engineering. There

were published initial works about formal methods

as a separated branch in the beginning of nineties of

20
th
 century; significant works are mainly [1], [2],

[3] and [4].

Since then, formal methods have infiltrated into

almost all engineering branches and today it is an

interdisciplinary tool facilitating work on design of

products and systems from HW to SW parts of

applications. Many articles and papers are

published every year; they show formal methods as

a useful tool at many areas of human activity like

aviation, economy, industry, communication,

control systems … [5], [6], [7], [8].

Embedded and real-time control systems are very

important areas in the everyday life. People and

systems itself are surrounded by tons of different

embedded system. They usually help us, but in the

case of wrong operation they can be a threat to us

or other systems. Embedded and real-time control

systems have passed through the secular trend in

the sphere of design, implementation and

verification of the systems. The tradition of control

systems in the embedded systems is based on its

ability to produce control systems working with

highly reliable and safe parameters. To produce

such reliable and safe systems via standard (and

proved) approach is a painful work requiring a lot

of time, skills and human efforts. However, the

human work is mainly in the area of

implementation (writing routines and programs,

designing HW ...) and not in the area of

specification and verification.

When considering different approaches of formal

design of real-time embedded systems, it is usually

problematic to choose an appropriate formal

method considering peculiarities of timeliness. The

formal approaches used for designing the real-time

systems (like UML, ROPES, etc.) concentrate

predominantly on theoretical solution of the

appropriate interactions of the blocks to provide a

real-time behavior in terms of timeliness and

synchronism. However, practical experiences show

that a fair amount of failures in real-time systems

are not only caused by flaws in design but also by

underestimation of the efficiency of the particular

point-to-point connection. Having designed proper

state automata, synchronization points of processes,

and employing further measures to diminish

compromising of timeliness is crucial if the

real-time embedded system is to be transferred to

the practice.

2. DEVELOPMENT STRATEGY

Project of the real-time embedded system based on

formal description requires specific development

strategy. This strategy should include control

mechanisms based on formal methods used during

development of the project as well as suitable final

implementation tools. The flowchart of such

project’s development strategy is shown in

Figure 1.

 Start of the project

System
requirements

Informal Specification (IS)

Formal Model (FM)

Verification of FM

Does FM fulfill

requirements?

FM is wrong?

IS wrong?

Automatic Implementation

of FM

Testing

End of the project

Tests are OK?

true

true

false

false

false

true

true

false

Figure 1 – Development Strategy

Flowchart of our development strategy consists of

several important steps. Step Start of the project

represents formal beginning of the project design

and it is followed by the step called System

Requirements. This step is easy to understand by

the inquiry: “What we must to do?” The answer to

this question is also first specification of the

project; inputs from several engineering branches

are collected and transformed into uniform

utterance. Step System Requirements is followed by

the step Informal Specification (IS) of the system;

in this step an informal model of the embedded

system task is created. The unexceptional design of

the task is finished in this step because an informal

model is usually machine interpretation of the

design inputs; computer program (indifferently to

the target platform) or flowchart are examples of

such informal specification. In the case of the

formal design, the formal model must be created

and verified. Our development strategy solves these

issues in the steps Formal Model (FM) of the

system and Verification of FM. When the

verification step is finished, first decision replies

the question: „Does FM fulfill the requirements?”

In case that all conditions, specified during

collection design inputs, are satisfied, formal model

of the project is automatically transferred into the

real-time operating system in target HW platform;

it is done in the step Automatic Implementation of

FM. As soon as the implementation is created, final

embedded system must be tested.

In the case that tests are not successful or FM does

not fulfill project requirements, it is necessary to

observe what part of the project is wrong. In this

case, there exist three possibilities:

I. The formal model is wrong - for instance,

deadlock or livelock is observed during

simulation/verification. In this case we have to

return back into the step Formal Model and

another appropriate formal description of the

system must be created.

II. The informal model is wrong - for instance, the

behavior of the system does not correspond

with the claims. In this case we have to return

back into the step Informal Specification where

the behavior of the systems is more precisely

specified.

III. If both above mentioned problems do not

occur, then we have to return back into the step

System Requirements and new requirements

must be found or precisely determined.

In the simplified way, the entire sequence is done in

the following four steps:

1. Define system’s requirements.

2. Create formal model of the system from the

informally specified system’s requirements.

3. Simulate the formal model and verify system’s

requirements.

4. Transfer formal model of the system into the

real-time operating system for target HW

platform.

3. FORMAL MODEL

As was mentioned in the introduction, an

appropriate formal method considering peculiarities

of timeliness must be chosen. For the purposes of

our automation tool, timed automaton and temporal

logic have been chosen as an appropriate

description method. The main advantage of this

formal method is that there exists an integrated tool

environment for modeling, simulation and

verification of real-time systems called UPPAAL.

UPPAAL was developed jointly by BRICS at

Aalborg University and the Department of

Computer systems at Uppsala University [9]. It is

the appropriate tool for system that can be modeled

as a collection of non-deterministic processes with

finite control structure and real valued clocks,

communicating through channels or shared

variables. Typical application areas include

real-time controllers, communication protocols in

particular, those where timing aspects are critical

and embedded systems control.

UPPAAL consists of three main parts: a description

language, a simulator and a model-checker.

1. The description language is a nondeterministic

guarded command language with simple data

types (unbounded integers, arrays, etc.). It

serves as a modeling or design language to

describe system behavior as networks of

automata extended with clock and data

variables.

2. The simulator is validation tool that enables

examination of possible dynamic executions of

a system during early design or modeling

stages ant thus provides an inexpensive mean

of fault detection prior to verification by the

model-checker, which covers the exhaustive

dynamic behavior of the system.

3. The model-checker is to check invariant and

bounded liveness properties by exploring the

symbolic state-space of the system, i.e.,

reachability analysis in terms of symbolic

states represented by constraints.

The theory of timed automaton is well described in

[10]. A number of verification tools have been

developed for timed systems in the past year.

UPPAAL is one of them as is described in [11],

[12], or [9]. The other tools are well described in

[13].

The goal of UPPAAL has always been to serve as a

platform for the tool to provide a flexible

architecture that allows experimentation. It should

allow orthogonal features to be integrated in an

orthogonal manner to evaluate various techniques

within a single framework and investigate how

influence each other [14].

4. AUTOMATION DESIGN TOOL

Automation design tool for real-time embedded

system design solves step Automatic

Implementation of FM in the Figure 1. Formal

model of the system is based on timed automata

created in UPPAAL. This formal model can be

automatically converted into the objects that are

easy to implement in real-time operating systems

and these objects results in executable code.

Structure of such automation tool is shown in

Figure 2. Formal model is represented by timed

automata diagram(s) created in UPPAAL. Model is

stored in XML file. Model Abstraction Layer

(MAL) and Real-time Abstraction layer (RAL) are

created from this XML file.

Timed automata model in UPPAAL

XML file of the Model

Model Abstraction Layer (MAL)

Real-time Abstraction Layer (RAL)

Model Cross Compiler (MCC)

C/C++ source code

Compiler

Executable

Figure 2 – Structure of the Automation Design Tool

The purpose of the MAL is to create an

independent interface between timed automata

model and real-time entities (processes, threads,

synchronizations, IPC) that will be automatically

implemented.

The purpose of the RAL is to create a unified

structure implementing automata and real-time

entities into general real-time operating system.

The Model Cross Compiler (MCC) is an interface

for MAL and RAL transferring formal model of the

system from the description tool into C/C++ source

code. This source code can be included into the

corresponding compiler and executable code for the

target HW platform can be created. While MAL

and RAL are independent on the target HW and

target operating system, structure of the MCC

strictly depends on the selected real-time operating

system and programming language (C or C++).

Different operating system uses common basic

objects/entities (processes, threads, IPC,

synchronization primitives, timers …) with

different interfaces – that’s why different MCC

must be created for corresponding operating

systems. For the purposes of this automation design

tool, RTX (Real-time extension of Windows) has

been chosen as a target platform and C++ as a

programming language.

5. CONCLUSION

Suggested tool for automation of real-time

embedded system design brings several advantages

into the area of system control design.

Routine implementation work of the software

engineer will be replaced by an automatic

implementation; it significantly increases safety and

reliability of the control systems, while its

verification demand will be lower.

Verification of the system will be based on its

formal specification; it brings possibility to verify

project during specification process and final

verification can be automated or semi-automated -

without human intervention.

Total design time will be reduced, while safety and

reliability parameters will be preserved or improved

with the lower costs.

6. ACKNOWLEDGEMENT

This work has been supported in part by Grant

Agency of the Czech Republic GA1890030

(Implementation of timed automata into real-time

operating systems), Ministry of Education, Youth

and Sports of the Czech Republic Research Intent

MSM0021630529 (Intelligent systems in

automation), and Project 1M0567 (Centre for

applied cybernetics).

7. REFERENCES

[1] J.M. Wing, “A Specifier's Introduction to

Formal Methods”, IEEE Computer, Vol. 23,

Issue 9, September 1990, pp. 8-23.

[2] J.P. Bowen and M.G. Hinchey, “Ten

Commandments of Formal Methods”, IEEE

Computer, Vol. 28, Issue 4, April 1995,

pp. 56-63.

[3] H. Saiedian (ed.), “An Invitation to Formal

Methods”, IEEE Computer, Vol. 29, Issue 4,

April 1996, pp. 16-30.

[4] P. Larsen, J. Fitzgerald, T. Brookes, “Lessons

Learned from Applying Formal Specification

in Industry”, IEEE Software, Vol. 13, Issue 3,

May 1996, pp. 48-56.

[5] O. Owe, G. Schneider, “Formal languages and

analysis of contract-oriented software”,

Journal of Logic and Algebraic

Programming, Volume 78, Issue 5, The 1st

Workshop on Formal Languages and Analysis

of Contract-Oriented Software (FLACOS'07),

May-June 2009, Pages 291-292.

[6] S. Di Cairano, A. Bemporad, J. Julvez, “Event-

driven optimization-based control of hybrid

systems with integral continuous-time

dynamics”, Automatica, Volume 45, Issue 5,

May 2009, Pages 1243-1251.

[7] T. Herpel, K. S. Hielscher, U. Klehmet, R.

German, “Stochastic and deterministic

performance evaluation of automotive CAN

communication”, Computer Networks,

Volume 53, Issue 8, Performance Modeling of

Computer Networks: Special Issue in Memory

of Dr. Gunter Bolch, 11 June 2009, Pages

1171-1185.

[8] R. Gumzej, M. Colnaric, W. A. Halang,

“Safety shell for specification-PEARL oriented

UML real-time projects“, Computer

Languages, Systems & Structures, Volume

35, Issue 3, October 2009, Pages 277-292.

[9] K.G. Larsen, P. Pettersson and W. Yi,

”UPPAAL in a Nutshell”. Interantional

Journal on Software Tools for Technology

Transfer, Vol. 1, Number 1-2, 1998, pp.

134-152.

[10] R. Alur and D.L. Dill, ”A theory of timed

automata”, Theoretical Computer Science,

Vol. 126, 1994, pp. 183-235.

[11] J. Bengtsson, K.G. Larsen, F. Larsson, P.

Pettersson and W. Yi, “Uppaal - a Tool Suite

for Automatic Verification of Real Time

Systems”, Proceedings of Workshop on

Verification and Control of Hybrid Systems

III, number 1066 in Lecture Notes in

Computer Science, Springer Verlag, October

1995.

[12] T. Hune, K.G. Larsen and P. Pettersson,

”Guided Synthesis of Control Programs Using

UPPAAL”, Proceedings of the IEEE ICDCS

International Workshop on Distributed

Systems Verification and Validation, April

2000, pp. 15-22.

[13] S. Yovine, “A verification tool for real time

systems” International Jornal on Software

Tools for Technology, Vol 1, October 1997,

pp. 123-133.

[14] A. David, G. Behrmann, K.G. Larsen and W.

Yi, “A tool Architecture for the next

generation of UPPAAL”, Technical report,

Uppsala university, Sweden, February 2003.

